Câu 1: Giải phương trình :
\(\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2-9x+2}\right)=7\)
Câu 2: Tìm \(x;y\in Z\) biết \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Câu 3: Cho \(a,b,c\) là các số hữu tỉ thỏa mãn \(\frac{1}{a+bc}+\frac{1}{b+ca}=\frac{1}{a+b}\). Chứng minh \(\frac{c-3}{c+1}\) là bình phương của một số hữu tỉ
Câu 4: Cho 3 số \(a,b,c\) thỏa mãn \(0\le a\le b\le c\le1\).
Tìm \(maxB=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Câu 1:ĐkXĐ \(x\ge-\frac{1}{4}\)
\(\left(2\sqrt{x+2}-\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)(theo đề ở dưới)
Nhân liên hợp ta có
\(\left(4\left(x+2\right)-4x-1\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)<=>\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)
Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t\left(t\ge0\right)\)
=> \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)
=> \(\frac{t^2-8x-9}{4}=\sqrt{4x^2+9x+2}\)
Khi đó (1)
<=> \(2x+3+\frac{t^2-8x-9}{4}=t\)
<=> \(\frac{3}{4}+\frac{t^2}{4}=t\)
=> \(\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)(tm)
+ \(t=1\) => \(\sqrt{4x^2+9x+2}=-2x-2\)
Mà \(x\ge-\frac{1}{4}\)
=> pt vô nghiệm
+ t=3 => \(\sqrt{4x^2+9x+2}=-2x\)
=> \(\left\{{}\begin{matrix}x\le0\\9x+2=0\end{matrix}\right.\)
=> \(x=-\frac{2}{9}\)(tmĐKXĐ)
Vậy x=-2/9
Câu 3:
\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)
<=> \(\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)
<=> \(\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)
<=> \(2abc+a^2+b^2+ab=abc^2\)
<=> \(\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)
<=> \(\left(a+b\right)^2=ab\left(c-1\right)^2\)
=> ab>0 , ab là bình phương của số hữu tỉ
=> \(c-1=\frac{a+b}{\sqrt{ab}}\)
=> \(c+1=\frac{a+b}{\sqrt{ab}}+2=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{ab}}\)
Khi đó
\(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\)là số hữu tỉ do ab là bình phương của số hữu tỉ
=> \(\frac{c-3}{c+1}\)là bình phương của số hữu tỉ(ĐPCM)
Câu 4 : Anh có cách này tạm được
Xét \(B\le10\)
Quy đồng chuyển vế ta có:\(\left(a+b+c+3\right)\left[\left(ab+bc+ac\right)+2\left(a+b+c\right)+3\right]\le10\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
<=>\(\Sigma a^2\left(b+c\right)+\Sigma2a^2+7\left(ab+bc+ac\right)+9\left(a+b+c\right)+9\le10\left(abc+\Sigma a+\Sigma ab+1\right)\)
<=> \(\Sigma a^2\left(b+c\right)+2\left(a^2+b^2+c^2\right)\le7abc+3\left(ab+bc+ac\right)+1+a+b+c\)
Mà \(\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)do \(0\le a,b,c\le1\)
=> \(a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)+2\left(a+b+c\right)\le7abc+3\left(ab+bc+ac\right)+\Sigma a+1\)
<=> \(a+b+c\le7abc+ab+bc+ac+1\)
Lại có \(7abc\ge-abc\)
=> \(a+b+c\le-abc+ab+bc+ac+1\)
<=> \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)luôn đúng với mọi \(0\le a,b,c\le1\)
=> ĐPCM
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}a^2=a\\b^2=b\\c^2=c\\\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\end{matrix}\right.\)
=> \(\left(a,b,c\right)=\left(1,1,0\right);\left(0,0,1\right),...\)và các hoán vị
Akai Haruma tth svtkvtm Ace Legona Nguyễn Việt Lâm Hung nguyen
Thiên tài bơi hết vào đây nào :>