Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiều Ngọc Tú Anh

1 Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)(0<x≠1)

a) Rút gọn

b) Tính GTLN của Q=\(P-9\sqrt{x}+2019\)

2

a) Giải pt: \(x-1+4\sqrt{4-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}\)

b) Cho a,b số thực a≠0

CM: \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{a}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)

c) Cho a, b, c là 3 số dương

CM: \(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^1+8ac\right)}+\frac{1}{c\left(c^2+8ab\right)}\le\frac{3}{3abc}\)

Dấu "=" xảy ra khi nào?

4

a) Tìm các số tự nhiên n sao cho n-50 và n+50 đều là số chính phương

b) Tìm số nguyên P,q sao cho

\(P^2=8q+1\)

5 Giải pt \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)

6 Cho 3 số thực x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge z\)

Tìm GTNN của P=xyz

tthnew
28 tháng 10 2019 lúc 20:10

5/ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

PT \(\Leftrightarrow2\left(x^2-4x-6\right)+\sqrt{x^2-4x-5}-1=0\)

\(\Leftrightarrow\left(x^2-4x-6\right)\left(2+\frac{1}{\sqrt{x^2-4x-5}+1}\right)=0\)

\(\Leftrightarrow x^2-4x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{matrix}\right.\)

Vậy..

Khách vãng lai đã xóa

Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Lâm ngọc mai
Xem chi tiết
Sakura
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
le duc minh vuong
Xem chi tiết
bach nhac lam
Xem chi tiết