Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Juvia Lockser

1.Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x-2018}-\sqrt{y-2019}=1\\\sqrt{y-2018}-\sqrt{x-2019}=1\end{matrix}\right.\)

2. Cho a,b là các số hữu tỉ thỏa mãn \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)

CMR: \(\sqrt{1+ab}\) là một số hữu tỉ

Help me!!!!Please!!!!

Lê Gia Bảo
28 tháng 11 2019 lúc 23:13

Từ hệ phương trình \(\Rightarrow\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)=2\)

Ta có: \(\sqrt{x-2018}-\sqrt{x-2019}\le\sqrt{\left(x-2018\right)-\left(x-2019\right)}=1\) Dấu = xảy ra khi và chỉ khi x = 2019

Tương tự: \(\sqrt{y-2018}-\sqrt{y-2019}\le1\)

Dấu = xảy ra khi và chỉ khi y = 2019

Nên: \(\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)\le2\)

Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Hoàng Cường
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
bach nhac lam
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
Mỹ Lệ
Xem chi tiết