Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Tiến Đỗ

a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)

b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)

Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:39

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:43

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...


Các câu hỏi tương tự
Kun ZERO
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Wang Soo Yi
Xem chi tiết
Kun ZERO
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
poppy Trang
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Nấm Chanel
Xem chi tiết