Lời giải:
PT(1): \(x^3-2x^2y+x=y^3-2xy^2+y\)
\(\Leftrightarrow (x^3-y^3)-2xy(x-y)+(x-y)=0\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2)-2xy(x-y)+(x-y)=0\)
\(\Leftrightarrow (x-y)(x^2-xy+y^2+1)=0\)
Ta thấy:
\(x^2-xy+y^2+1=(x-\frac{y}{2})^2+\frac{3y^2}{4}+1\geq 1>0\) với mọi số thực x,y
Do đó: \(x-y=0\Leftrightarrow x=y\)
Thay vào PT(2):
\(\sqrt{y-1}+\sqrt{5-y}=-y^2+2y+1\)
Xét: \(\text{VT}^2=4+2\sqrt{(y-1)(5-y)}\geq 4\) nên \(\text{VT}\geq 2\) hoặc \(\text{VT}\leq -2\). Mà vế trái luôn không âm nên:
\(\Rightarrow \text{VT}\geq 2\)
Xét \(\text{VP}=-(y^2-2y+1)+2=2-(y-1)^2\leq 2\forall y\in\mathbb{R}\)
\(\text{VT}=\text{VP}\Leftrightarrow \text{VT}=\text{VP}=2\)
Dấu bằng xảy ra khi \(y=1\)
Vậy \((x,y)=(1,1)\)