Những câu hỏi liên quan
Đường Kỳ Quân
Xem chi tiết
Đỗ Tuệ Lâm
25 tháng 2 2022 lúc 21:40

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

Bình luận (3)
Hồ Lê Thiên Đức
25 tháng 2 2022 lúc 23:05

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)

hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

-Xét a + b = 0 => P = 2022^2021

Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé

Bình luận (2)
hồ ly
27 tháng 1 2023 lúc 22:16

a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0

(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0

(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0

  a=−b

  b=−c

  c=−a

Thay vào P từng cái rồi tính tiếp nhé

Bình luận (0)
Nguyễn Dương Thành Đạt
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 9 2021 lúc 14:24

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

\(\dfrac{1}{2a+b+c}=\dfrac{1}{4}.\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)

CMTT \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\\\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{2}{2a}+\dfrac{2}{2b}+\dfrac{2}{2c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}.4=1\)

\(minM=1\Leftrightarrow a=b=c=\dfrac{3}{4}\)

 

 

Bình luận (1)
Kim Khánh Linh
Xem chi tiết
Bellion
15 tháng 5 2021 lúc 14:30

                      Bài làm :

Ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

Dấu "=" xảy ra khi : a=b

Chứng minh tương tự như trên ; ta có :

\(\hept{\begin{cases}\frac{1}{b+c}\text{≤}\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\left(2\right)\\\frac{1}{c+a}\text{≤}\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\left(3\right)\end{cases}}\)

Cộng vế với vế của (1) ; (2) ; (3) ; ta được :

\(A\text{≤}\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\text{=}\frac{3}{2}\)

Dấu "=" xảy ra khi ;

\(\hept{\begin{cases}a=b=c\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\end{cases}}\Leftrightarrow a=b=c=1\)

Vậy Max (A) = 3/2 khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Ối giời ối giời ôi
15 tháng 5 2021 lúc 14:14

quản lí tên kiểu j z

Bình luận (0)
 Khách vãng lai đã xóa
Ối giời ối giời ôi
15 tháng 5 2021 lúc 14:14

aaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffff

Bình luận (0)
 Khách vãng lai đã xóa
Minh Hiếu
Xem chi tiết
Akai Haruma
22 tháng 1 2022 lúc 0:15

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

Bình luận (0)
Akai Haruma
22 tháng 1 2022 lúc 0:31

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

Bình luận (2)
Trần Tuấn Hoàng
21 tháng 5 2022 lúc 20:25

3.

Hình vẽ:

undefined

Lời giải:

a) △AMC và △BNC có: \(\widehat{AMC}=\widehat{BNC}=90^0;\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△AMC∼△BNC (g-g).

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CM}{CN}\Rightarrow AC.CN=BC.CM\left(1\right)\)

b) △AMB và △CPB có: \(\widehat{AMB}=\widehat{CPB}=90^0;\widehat{ABC}\) là góc chung.

\(\Rightarrow\)△AMB∼△CPB (g-g)

\(\Rightarrow\dfrac{AB}{CB}=\dfrac{BM}{BP}\Rightarrow AB.BP=BC.BM\left(2\right)\)

Từ (1) và (2) suy ra:

\(AC.CN+AB.BP=BC.CM+BC.BM=BC.\left(CM+BM\right)=BC.BC=BC^2\left(đpcm\right)\)b) Gọi \(M_0\) là trung điểm BC, giả sử \(AB< AC\).

\(\widehat{HBM}=90^0-\widehat{BHM}=90^0-\widehat{AHN}=\widehat{CAM}\)

△HBM và △CAM có: \(\widehat{HBM}=\widehat{CAM};\widehat{HMB}=\widehat{CMA}=90^0\)

\(\Rightarrow\)△HBM∼△CAM (g-g) 

\(\Rightarrow\dfrac{MH}{CM}=\dfrac{BM}{MA}\Rightarrow MH.MA=BM.CM\)

Ta có: \(BM.CM=\left(BM_0-MM_0\right)\left(CM_0+MM_0\right)=\left(BM_0-MM_0\right)\left(BM_0+MM_0\right)=BM_0^2-MM_0^2\le BM_0^2=\dfrac{BC^2}{4}\)

\(\Rightarrow MH.MA\le\dfrac{BC^2}{4}\).

Vì \(BC\) không đổi nên: \(max\left(MH.MA\right)=\dfrac{BC^2}{4}\), đạt được khi △ABC cân tại A hay A nằm trên đường trung trực của BC.

c) Sửa đề: \(S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)

△AMC∼△BNC \(\Rightarrow\dfrac{AC}{BC}=\dfrac{MC}{NC}\Rightarrow\dfrac{AC}{MC}=\dfrac{BC}{NC}\)

△ABC và △MNC có: \(\dfrac{AC}{MC}=\dfrac{BC}{NC};\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△ABC∼△MNC (c-g-c)

\(\Rightarrow\dfrac{S_{MNC}}{S_{ABC}}=\dfrac{S_1}{S}=\dfrac{MC}{AC}.\dfrac{NC}{BC}\left(1\right)\)

Tương tự: 

△ABC∼△MBP \(\Rightarrow\dfrac{S_{MBP}}{S_{ABC}}=\dfrac{S_2}{S}=\dfrac{MB}{AB}.\dfrac{BP}{BC}\left(2\right)\)

△ABC∼△ANP \(\Rightarrow\dfrac{S_{ANP}}{S_{ABC}}=\dfrac{S_3}{S}=\dfrac{AN}{AB}.\dfrac{AP}{AC}\left(3\right)\)

Từ (1), (2), (3) suy ra:

\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC}{AC}.\dfrac{NC}{BC}\right).\left(\dfrac{MB}{AB}.\dfrac{BP}{BC}\right).\left(\dfrac{AN}{AB}.\dfrac{AP}{AC}\right)\) 

\(\Rightarrow\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC.MB}{AC.AB}\right).\left(\dfrac{BP.AP}{AC.BC}\right).\left(\dfrac{AN.CN}{AB.BC}\right)\) (*)

Áp dụng câu b) ta có:

\(\left\{{}\begin{matrix}BM.CM\le\dfrac{1}{4}BC^2\\AP.BP\le\dfrac{1}{4}AB^2\\AN.CN\le\dfrac{1}{4}AC^2\end{matrix}\right.\)

Từ (*) suy ra:

\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}\le\left(\dfrac{\dfrac{1}{4}BC^2}{AC.AB}\right).\left(\dfrac{\dfrac{1}{4}AC^2}{AC.BC}\right).\left(\dfrac{\dfrac{1}{4}AB^2}{AB.BC}\right)=\dfrac{1}{64}\)

\(\Rightarrow S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)

Dấu "=" xảy ra khi △ABC đều.

 

 

Bình luận (0)
Tô Mì
Xem chi tiết
Akai Haruma
13 tháng 5 2023 lúc 22:52

Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?

Bình luận (0)
Minh Hiếu
Xem chi tiết
Minh Hiếu
24 tháng 2 2022 lúc 20:35

Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha

Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)

 
Bình luận (0)
Nguyễn Hoàng Minh
24 tháng 2 2022 lúc 21:28

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)

Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$

Bình luận (1)
Vũ Thanh Lương
Xem chi tiết
Vũ Thanh Lương
12 tháng 1 2022 lúc 21:19

cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\)  nha

Bình luận (0)
Nguyễn Việt Lâm
14 tháng 1 2022 lúc 6:05

\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 18:16

Mn ơi ai bt làm câu nào thì giúp mik cậu đó với !!

Bình luận (0)
hưng phúc
31 tháng 10 2021 lúc 18:19

1. a. 

Ta có: 128 = (124)2 = 207362

Ta thấy: 20736 > 81

=> 128 > 812

(Các câu khác cũng tương tự nhé.)

Bình luận (0)
Đặng Anh Tuấn
Xem chi tiết