Cho p:y=x^2 và d:y=2(m+3)x-m^2-m-2 Tìm m để p và d cắt nhau,tiếp xúc nhau, không cắt nhau
cho p:y=(m-2)x^2,d:y=2mx+2+m.tìm m để:
a,d không giao p
b,d tiếp xúc p
c,d cắt p tại 2 điểm
d,d cắt p tại 2 điểm bên trái trục tung
e,d cắt p tại 2 điểm bên phải trục tung
f,d cắt p tại 2 điểm khác phía nhau so với trục tung
cho p:y=(m-2)x^2,d:y=2mx+2+m.tìm m để:
a,d không giao p
b,d tiếp xúc p
c,d cắt p tại 2 điểm
d,d cắt p tại 2 điểm bên trái trục tung
e,d cắt p tại 2 điểm bên phải trục tung
f,d cắt p tại 2 điểm khác phía nhau so với trục tung
cho P:y=x2+4x+1 và đường thẳng d:y=2x+3m-1
Tìm m để d và P cắt nhau tại hai điểm sao cho
a; AB=2√5
b; tam giác OAB cân
Cho 2 đường thẳng d:y=x+3 và d':y=-2x+m^2-1.Tìm m để 2 đường thẳng cắt nhau tại 1 điểm trên trục tung.Khi đó d cắt Ox tại M,d' cắt Ox tại N.Tính S MON
cho hàm số y=\(x^2\) (P) và y=2(m-3)x+m-9 (d), m là tham số, m∈R
a)với giá trị nào của m thì (d) là hàm số bậc nhất đồng biến
b)tìm m để đồ thị(P) và (d) tiếp xúc nhau, tìm tọa độ tiếp điểm.
c)xác định m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ âm.
a: Để hàm số đồng biến thì 2m-6>0
hay m>3
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-6\right)x-m+9=0\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)
\(=4m^2-24m+36+4m-36\)
=4m2-20m
Để (P) tiếp xúc với (d) thì 4m(m-5)=0
=>m=0 hoặc m=5
Cho p:y=x^2 và d:y=(2m+1)x-2m.tìm m để d cắt p tại hai điểm phân biệt M(x1,y1),N(x2,y2) sao cho y1+y2-x1x2
Phương trình hoành độ giao điểm của \(\left(d\right),\left(P\right)\) là : \(x^2=\left(2m+1\right)x-2m\)
hay : \(x^2-\left(2m+1\right)x+2m=0\left(I\right)\).
Do, \(\left(d\right)\cap\left(P\right)\) tại hai điểm phân biệt nên phương trình \(\left(I\right)\) có hai nghiệm phân biệt khi \(\Delta=b^2-4ac>0\)
Hay : \(\left[-\left(2m+1\right)\right]^2-4.1.2m>0\)
\(\Leftrightarrow4m^2+4m+1-8m>0\)
\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\dfrac{1}{2}\).
Theo định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(2m+1\right)}{1}=2m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{2m}{1}=2m\end{matrix}\right.\)
Theo đề bài : \(y_1+y_2-x_1x_2=1\left(II\right)\)
Do các điểm trên thuộc \(\left(P\right)\) nên \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\).
Khi đó, ta viết lại phương trình \(\left(II\right)\) thành : \(x_1^2+x_2^2-x_1x_2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=1\)
\(\Rightarrow\left(2m+1\right)^2-3.2m=1\)
\(\Leftrightarrow4m^2+4m+1-6m=1\)
\(\Leftrightarrow4m^2-2m=0\)
\(\Leftrightarrow2m\left(2m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}2m=0\\2m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Vậy : \(m=0\).
Tìm `m` để `d` và `d'` cắt nhau tại `1` điểm trên `Ox`
`d:y=2x+5` và `d':y=x-3m+2`
Để d' và d cắt nhau tại 1 điểm thuộc trục Ox thì
2<>1 và -5/2=(3m-2)/1
=>3m-2=-5/2
=>3m=-1/2
=>m=-1/6
Chờ xong đợt anh Linh ra đề rồi anh làm cho m
Cho P:y=x^2,d:y=ax+b.
a)Tìm điểm M(x0;y0) thuộc parabol P sao cho khoảng cách từ M đến hai trục tọa độ bằng nhau
b)Xác định a,b để đường thẳng d đi qua điểm A(1;1) và d cũng là tiếp tuyến của P
\(a\text{) Gọi }M\left(m;m^2\right)\in P\)
\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)
\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)
\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)
\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)
\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)
\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)
\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)
\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)
\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)
\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)
\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)
\(\Rightarrow b=-1\)
\(\text{Vậy }a=2;\text{ }b=-1\)
BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m1.
Với m = 3, hãy:a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.2. Tìm các giá trị của m để:
1) (d) và (P) tiếp xúc nhau.
2) (d) cắt (P) tại hai điểm phân biệt
Bạn ghi rõ hơn được không?
d: y=-2x+m cái gì 1?