\(CMR:\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{3}{3^{2001}}< \dfrac{4}{5}\)
1. Cho N=\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\)
CMR \(\dfrac{3}{5}< N< \dfrac{4}{5}\)
2. Cho M=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{29}{3^{29}}-\dfrac{30}{3^{30}}\)
CMR \(M< \dfrac{3}{16}\)
3. Cho Q=\(\dfrac{2}{3}+\dfrac{8}{9}+\dfrac{26}{27}+...+\dfrac{3^{2021}-1}{3^{2021}}\)
CMR \(Q>\dfrac{4041}{2}\)
CMR: \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)
Helppp!!!
Lời giải:
Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)
\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)
\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)
$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$
Ta có đpcm.
Giải:
Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu
Ta có:
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\)
Chúc bạn học tốt!
CMR \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)
đặt \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ Q=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)
ta có:
\(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ \Rightarrow P=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2001}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\)\(\Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1001}\right)\\ \Rightarrow P=\dfrac{1}{1002}+...+\dfrac{1}{2002}\\ \Rightarrow P=Q\)\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\left(đpcm\right)\)
\(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)<\(\dfrac{3}{16}\)CMR
Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )
= 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)
4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )
= 3 - \(\dfrac{1}{3^{99}}\)
B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)
⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\)
A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Vậy A < \(\dfrac{3}{16}\)
Cmr : \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) +\(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) + ...+\(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)< \(\dfrac{3}{16}\)
\(3\dfrac{3}{3}.\dfrac{1}{3}-\dfrac{3}{4}.\dfrac{1}{3}\)
\(\left[\dfrac{11}{3}\right]-\left(\dfrac{-1}{2}\right)^2-4\dfrac{1}{2}\)
\(\left(\dfrac{3}{2}-\dfrac{5}{4}+\dfrac{1}{3}\right):\left(\dfrac{4}{3}+2\dfrac{3}{2}-\dfrac{3}{4}\right)\)
\(5\dfrac{5}{27}+\dfrac{7}{23}+0,5+\dfrac{-5}{27}+\dfrac{16}{23}\)
\(2\dfrac{5}{4}+\left(-2018\right)^0-\left[\dfrac{-1}{4}\right]\)
\(\dfrac{19}{11}.\dfrac{6}{5}+\dfrac{6^2}{11}.\dfrac{6}{5}-\left(\dfrac{1}{2}\right)^0\)
Tính hợp lí, tính nhanh( nếu có )
a)\(\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,75-2,2+\dfrac{11}{7}+\dfrac{11}{13}}\) c)\(-\left|1,5\right|.(1\dfrac{1}{3}-2)-\left|-\dfrac{2}{3}\right|\)
b)\(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}\dfrac{ }{ }}{0.625-0,5+\dfrac{5}{11}+\dfrac{5}{12}}\) d)\([(\dfrac{2}{193}-\dfrac{3}{386}).\dfrac{193}{17}+\dfrac{33}{34}]:[(\dfrac{7}{2001}+\dfrac{11}{4002}.\dfrac{2001}{25}+\dfrac{9}{12}]\)
a, \(\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,72-2,2+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{11}{4}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}\)
= \(\dfrac{3}{11}\)
b. \(\dfrac{0,357-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{0,625-0,5+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\)
= \(\dfrac{3}{5}\)
c, \(-\left|-1,5\right|.\left(1\dfrac{1}{3}-2\right)-\left|-\dfrac{2}{3}\right|\)
= \(-1,5.\left(\dfrac{4}{3}-2\right)-\dfrac{2}{3}\)
= \(-1,5.\left(\dfrac{-2}{3}\right)-\dfrac{2}{3}\)
= \(1-\dfrac{2}{3}=\dfrac{1}{3}\)
Cho biểu thức : \(C=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) CMR: \(C< \dfrac{3}{16}\)
Ta có: \(C=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>\(3C=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
=>\(3C+C=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{99}{3^{98}}-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>\(4C=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(A=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)
=>\(3A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)
=>\(3A+A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)
=>\(4A=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)
=>\(A=\frac{-3^{99}-1}{4\cdot3^{99}}\)
Ta có: \(4C=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=>\(4C=1+A-\frac{100}{3^{100}}=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-1-400}{4\cdot3^{100}}=1+\frac{-3^{100}-401}{4\cdot3^{100}}\)
=>\(4C=1-\frac14-\frac{401}{4\cdot3^{100}}<1-\frac14=\frac34\)
=>\(C<\frac{3}{16}\)
CMR \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)