Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Carthrine
Xem chi tiết
Lee Min Ho club
19 tháng 6 2016 lúc 20:10

a,Tính tổng:S=1+52+54+...+5200

=>52S=52+54+56+...+5202

=>25S-S=24S=5202-1

=>S=\(\frac{5^{202}-1}{24}\)

b,So sánh 230+330+430 và 3.2410

3.24^10=3^11.4^15 
4^30=4^15.4^15 
hiển nhiên 4^15>3^11 
=>3.24^10<<4^30<<<2^30+3^20+4^30

Đinh Thị Huyền Nga
12 tháng 6 2017 lúc 15:26

Ta có: 230+330+430>230+230+430=231+230.230

                                                                 =231(1+229) (1)

Lại có:3.24^10=3^11.2^30 (2)

So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29

                              và 2^30<2^31

=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30

Nguyễn Thuỳ Chi
Xem chi tiết
nthv_.
16 tháng 8 2021 lúc 21:45

230+330+430 < 3.3210

tamanh nguyen
16 tháng 8 2021 lúc 21:46

<

tamanh nguyen
16 tháng 8 2021 lúc 22:23

230+330+430 và 3.3210

1,153< 3,378

Nguyễn Thuỳ Chi
Xem chi tiết
Babi girl
17 tháng 8 2021 lúc 8:33

bạn ghi sai đề :)))

Xinh Anime
17 tháng 8 2021 lúc 8:33

undefined

Babi girl
17 tháng 8 2021 lúc 8:37

Ta có: 430 = 230 . 230 = (23)10 . (22)15 > 810 . 315 > (810 . 310) . 35 > 2410 . 3

Vậy 230 + 330 + 430 > 3.2410

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2017 lúc 17:01

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2017 lúc 9:27

Ta có: 9920 = (992)10= 980110

9801 < 9999 => 980110 < 999910

Vậy 9920 < 999910

Nguyễn Thuỳ Chi
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 14:47

\(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

hưng phúc
5 tháng 10 2021 lúc 14:49

Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

Ta thấy: \(9801< 9999\)

=> \(99^{20}< 9999^{10}\)

Tô Hà Thu
5 tháng 10 2021 lúc 14:49

\(99^{20}=198^{10}\)

\(\Rightarrow99^{20}< 9999^{10}\)

English Study
Xem chi tiết
Nguyễn Đức Trí
19 tháng 8 2023 lúc 14:34

a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

English Study
19 tháng 8 2023 lúc 14:22

Giải chi tiết giúp mình ạ~

Dang Tung
19 tháng 8 2023 lúc 14:43

\(\left(d\right):202^{303}=\left(202^3\right)^{101}=8242408^{101}>303^{202}=\left(303^2\right)^{101}=91809^{101}\)

\(\left(e\right):107^{50}=\left(107^2\right)^{25}=11449^{25}< 73^{75}=\left(73^3\right)^{25}=389017^{25}\)

Thủy Tiên
Xem chi tiết
Đặng Đình Tùng
22 tháng 8 2021 lúc 9:51

`99^{20}=(99^{2})^{10}=(99.99)^{10}`

`9999^{10}=(99.101)^{10}`

Vì `(99.99)^{10}<(99.101)^{10}`

`->99^{20}<9999^{10}`

Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 14:34

Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

mà 9801<9999

nên \(99^{20}< 9999^{10}\)

Trần Thị Tuý Nga
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 0:45

Lời giải:

a) $A-B=99.10^k-10^{k+2}-10^k=99.10^k-100.10^k-10^k$

$=10^k(99-100-1)=-2.10^k< 0$

$\Rightarrow A<b$

b) $99^{20}-9999^{10}=99^{20}-(99.101)^{10}$

$<99^{20}-(99.99)^{10}=99^{20}-99^{20}=0$

$\Rightarrow 99^{20}<9999^{10}$

ĐOÀN THỊ MINH HIỀN
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 7:20

\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)

\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)

 

 

Thịnh
19 tháng 9 2021 lúc 22:57

Mai lam