cho tam giác ABC vuông tại đỉnh A, A(-1;4), B(1;-4) và đường thẳng BC đi qua điểm M\(\left(2;\dfrac{1}{2}\right)\). xác định tọa độ đỉnh C
Câu 1. Tam giác ABC cân tại B có
0 B 40 thì A bằng:
A) 400 B) 70
0 C) 60
0 D) 50
0
Câu 2. Tam giác AED có AD2 = DE2 - AE2thì tam giác AEDA) vuông tại E B) vuông tại D C) vuông tại A D) không vuôngCâu 3. Cho tam giác ABC và tam giác có ba đỉnh D; E; F, biết AB = EF, B =F . Cần thêm điềukiện gì để hai tam giác bằng nhau theo trường hợp: góc - cạnh - góc?A) AC = FD B) A =F C) C=E D) A=ECâu 4. Cho tam giác DEF vuông cân tại D, có DE=3cm thì EF bằng:A) 18cm B) 12cm C) 12 cm D) 18 cm
II. BÀI TẬP TỰ LUẬN (8 điểm)Cho tam giác ABC có
0 A 90 và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MB
lấy điểm D sao cho MD = MB. 1) Chứng minh ABM = CDM từ đó chứng minh AB=CD và AB //
Câu 1: B
Câu 2:Sửa đề: \(AD^2=DE^2+AE^2\)
=> Chọn A
Câu 3: Chọn D
Câu 4: \(EF=3\sqrt{2}cm\)
cho tam giác vuông ABC vuông tại A. Phân giác tại đỉnh B cắt phân giác tại đỉnh C tại D.
CMr BE.CF=2BD.DC
cho tam giác ABC vuông tại A biết B^ = 70° tính được góc ngoài của tam giác ABC tại đỉnh C là
có : ( tổng ba góc của một tam giác )
Mà ( hai góc kề bù )
Cho tam giác ABC. Vẽ điểm O cách đều ba đỉnh A, B, C trong mỗi trường hợp sau:
a) Tam giác ABC nhọn;
b) Tam giác ABC vuông tại A;
c) Tam giác ABC có góc A tù.
a) Tam giác ABC nhọn:
b) Tam giác ABC vuông tại A:
c) Tam giác ABC có góc A tù:
cho tam gaics ABC vuông góc tại đỉnh C. Về phía ngoài tam giác, ta dựng các tam giác ABD vuông cân tại đỉnh D, tam giác ACE vuông cân ở M: a)CM tứ giác BAMD là hình thang vuông b)CM hệ thức DM=BD+CM
Hai tam giác vuông ABC (vuông tại đỉnh A) và A’B’C’ (vuông tại đỉnh A’) có các cặp cạnh góc vuông bằng nhau: AB = A'B', AC = A'C' (H.4.45). Dựa vào trường hợp bằng nhau cạnh - góc - cạnh của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và ABC bằng nhau.
Xét 2 tam giác ABC và A’B’C có:
AB=A’B’ (gt)
\(\widehat A = \widehat {A'}\) (gt)
AC=A’C’ (gt)
\( \Rightarrow \Delta ABC = \Delta A'B'C'\)(c.g.c)
\(\Delta ABC\perp A\) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
= > Góc B và Góc C phải là 2 góc nhọn
Góc ngoài đỉnh B = \(180^0-\widehat{B}\)mà Góc B nhọn = > Góc ngoài tại đỉnh B là góc tù
Cho tam giác ABC vuông tại A có đường phân giác AD. Gọi AE là tia phân giác
góc ngoài của tam giác ABC tại đỉnh A, nó cắt BC ở E. Chứng minh: \(\dfrac{1}{AB^2}\) +\(\dfrac{1}{AC^2}\)= \(\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Kẻ \(AH\perp BC\) tại H
Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\)
Áp dụng hệ thức lượng vào tam giác vuông AED có:
\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)
Vậy...
Cho Tam giác abc vuông tại a gọi h là chân đường vuông góc kẻ từ a Đến cạnh bc. Tìm khoảng cách từ đỉnh a b c Đến các cạnh của tam giác abc
h(A;BC)=AH
h(B;AC)=BA
h(C;AB)=CA
Cho tam giác ABC vuông tại đỉnh A có AB = AC. Điểm I nằm trong tam giác ABC sao cho MA : MB : MC = 1 : 2 : 3. Tính số đo góc AIC