\(\overrightarrow{BM}=\left(1;\dfrac{9}{2}\right)\)
vecto BC=(x-1;y+4)
vecto AC=(x+1;y-4)
vecto AB=(2;-8)
Theo đề, ta có: 1/x-1=9/2(y+4) và 2(x+1)-8(y-4)=0
=>9(x-1)=2(y+4) và 2x+2-8y+32=0
=>9x-9-2y-8=0 và 2x-8y=-34
=>x=3 và y=5
=>C(3;5)
\(\overrightarrow{BM}=\left(1;\dfrac{9}{2}\right)\)
vecto BC=(x-1;y+4)
vecto AC=(x+1;y-4)
vecto AB=(2;-8)
Theo đề, ta có: 1/x-1=9/2(y+4) và 2(x+1)-8(y-4)=0
=>9(x-1)=2(y+4) và 2x+2-8y+32=0
=>9x-9-2y-8=0 và 2x-8y=-34
=>x=3 và y=5
=>C(3;5)
Trong mặt phẳng Oxy cho tam giác ABC cân tại A có \(A\left(-1;4\right)\) và các đỉnh B, C thuộc đường thẳng \(\Delta:x-y-4=0\)
a) Tính khoảng các từ A đến đường thẳng \(\Delta\)
b) Xác định tọa dộ các điểm B và C biết diện tích tam giác ABC bằng 18
Trong mặt phẳng tọa độ Oxy, hãy xác định tọa độ đỉnh C của tam giác ABC biết rằng hình chiếu vuông góc của C trên đường thẳng AB là điểm \(H\left(-1;-1\right)\), đường phân giác trong góc A có phương trình \(x-y+2=0\) và đường cao kẻ từ B có phương trình \(4x+3y-1=0\)
Cho một elip (E) : \(x^2+4y^2=16\)
a) Xác định tọa độ các tiêu điểm và các đỉnh của elip (E)
b) Viết phương trình đường thẳng \(\Delta\) đi qua điểm \(M\left(1;\dfrac{1}{2}\right)\) và có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;2\right)\)
c) Tìm tọa độ các giao điểm A và B của đường thẳng \(\Delta\) và elip (E). Chứng minh MA = MB
Trong mặt phẳng tọa đọ Oxy, xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : \(\sqrt{3}x-y-\sqrt{3}\), các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp tam giác bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(0;2\right);B\left(-2;2\right);C\left(4;-2\right)\). Gọi H là chân đường cao kẻ từ B, M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
trên mặt phẳng tọa độ Oxy cho tam giác ABC có A(4;-1) và pt 2 đường phân giác BE:x-1=0, CF:x-y-1=0 . tìm tọa độ đỉnh B và C
Trong mặt phẳng tọa độ Oxy cho điểm \(C\left(2;0\right)\) và elip (E) : \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)
Tìm tọa độ các điểm A, B thuộc (E) biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có tâm \(I\left(\dfrac{1}{2};0\right)\) phương trình đường thẳng AB là : \(x-2y+2=0\) và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết đỉnh A có hoành độ âm ?
Trong mặt phẳng tọa đọ Oxy cho điểm \(M\left(2;\dfrac{3}{2}\right)\)
a) Viết phương trình đường tròn (C) có đường kính OM
b) Viết phương trình đường thẳng d đi qua M và cắt hai nửa trục dương Ox, Oy lần lượt tại A, B sao cho diện tích tam giác OAB bằng 6 đơn vị diện tích
c) Tìm tọa độ tâm I của đường tròn nội tiếp (T) của tam giác OAB. Viết phương trình đường tròn đó