Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Thành Nhân Võ
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 15:50

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Kiều Thu Lan
Xem chi tiết
Nguyễn Tũn
28 tháng 7 2018 lúc 15:57

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 15:57

tích mình đi

ai tích mình 

mình tích lại 

thanks

Đào Trần Tuấn Anh
28 tháng 7 2018 lúc 15:59

hs minh

Trà My
Xem chi tiết
Jennie Kim
22 tháng 4 2020 lúc 12:06

\(x+y=1\Rightarrow\hept{\begin{cases}x=1-y\\y=1-x\end{cases}}\)

\(A=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{-1}{y^2+y+1}-\frac{-1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{-x^2-x-1+y^2+y+1}{\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{\left(y-x\right)\left(x+y\right)+\left(y-x\right)}{x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{\left(y-x\right)\left(x+y+1\right)}{x^2y^2+x^2+y^2+xy\left(x+y\right)+xy+\left(x+y\right)+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\) mà x + y = 1

\(A=\frac{2\left(y-x\right)}{x^2y^2+x^2+y^2+2xy+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{2\left(y-x\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\) ; x + y = 1

\(A=\frac{2\left(y-x\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Khách vãng lai đã xóa
hungdung
Xem chi tiết
Lightning Farron
11 tháng 12 2016 lúc 10:37

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

Đào Trọng Luân
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Nguyen Khanh Linh
Xem chi tiết
Ngô Lan Chi
Xem chi tiết
Xuan Xuannajimex
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 4 2021 lúc 0:32

Có thể tìm được min của P chứ không thể tính ra được giá trị cụ thể của P (biểu thức P vẫn phụ thuộc x;y, cụ thể sau khi rút gọn \(P=2\left(x+y\right)-1\))

Nguyễn Việt Lâm
12 tháng 4 2021 lúc 0:42

\(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\Leftrightarrow1+\dfrac{x}{1-x}+1+\dfrac{y}{1-y}=3\)

\(\Leftrightarrow3=\dfrac{1}{1-x}+\dfrac{1}{1-y}\ge\dfrac{4}{2-\left(x+y\right)}\)

\(\Leftrightarrow2-\left(x+y\right)\ge\dfrac{4}{3}\Rightarrow x+y\le\dfrac{2}{3}< 1\)

Cũng từ giả thiết:

\(\dfrac{x\left(1-y\right)+y\left(1-x\right)}{\left(1-x\right)\left(1-y\right)}=1\Leftrightarrow x+y-2xy=1-x-y+xy\)

\(\Leftrightarrow3xy=2\left(x+y\right)-1\)

Do đó:

\(P=x+y+\sqrt{\left(x+y\right)^2-3xy}=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)

\(P=x+y+\sqrt{\left(1-x-y\right)^2}=x+y+1-x-y=1\)

À tính được P, nãy xác định ngược dấu.

Hoàn Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 22:43

=>\(\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

=>x^2+2xy+y^2-4xy>=0

=>(x-y)^2>=0(luôn đúng)