Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Nhung Nguyệt
Xem chi tiết
Quang
23 tháng 4 2017 lúc 9:54

Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1

Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:

\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)

\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)

Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)

\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)

Vì  \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.

Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.

Kudo Shinichi
23 tháng 4 2017 lúc 9:19

Gọi d là UCLN của 2n +1 và 3n+2

2n+1\(⋮\)d

\(3n+2⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d

\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

Nguyễn Thị Thanh Thảo
13 tháng 4 2018 lúc 9:42

Gọi d là ƯC của 2n+1 và 3n+2

( 2 n + 1 ) \(⋮\)d\(\Rightarrow\)3 × ( 2 n + 1 ) \(\Rightarrow\)( 6 n + 1 )

( 3 n + 2 ) \(⋮\)d\(\Rightarrow\)2 × ( 3 n + 2 ) \(\Rightarrow\)( 6 n + 2 )

\(\Rightarrow\)(3 n + 1 - 3 n + 2 )

= 1  

\(\Rightarrow\)d = 1 ; d = -1

Thảo Nguyên
Xem chi tiết
Muôn cảm xúc
6 tháng 5 2016 lúc 16:54

Gọi UCLN(2n + 1 ; 3n + 2) = d

2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d

3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d

=> [(6n + 4) - (6n + 3)] chia hết cho d

1 chia hết cho d => d = 1

Vì UCLN(2n + 1 ; 3n + 2) = 1

Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)

Mai Linh
6 tháng 5 2016 lúc 15:21

goij d là ước chung của 2n +1 và 3n+2

2n+1chia hết cho d => 3(2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n+2 chia hết cho d=> 2(3n +2)chia hết cho d => 6n + 4 chia hết cho d (2)

lấy (2) trừ (1) ta có 1 chia hết cho d vậy d=cộng trừ 1

nên phân số đã cho tối giản

 

 

đào thị hoàng yến
10 tháng 5 2016 lúc 15:02

Để 2n + 1 / 3n+2  là phân số tôi giản thì 2n+1 và 3n +2 phải nguyên tố cùng nhau

Gọi d là ƯCLN(2n+1,3n+2) ; d thuộc N*

Suy ra 2n+1 chia hết cho d và 3n + 2 chia hết cho d

Hay :   3.(2n+1) chia hết cho d và 2. (3n+2) chia hết cho d

=>       6n+3 chia hết cho d và 6n+4 chia hết cho d 

Suy ra [ ( 6n+4)-(6n+3 )] chia hết cho d

       => ( 6n+4 - 6n - 3 ) chia hết cho d

       =>             1            chia hết cho d 

       => d thuộc Ư(1) ={1} nên d =1

                                         Hay ƯCLN (2n+1 , 3n+2 ) =1

Vậy 2n+1 / 3n+2 là phân số tối giản

Nguyễn Thị Tố Quyên
Xem chi tiết
Huỳnh Quang Sang
30 tháng 4 2019 lúc 20:04

                                                Lời giải:

Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)

=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

=> \((6n+4)-(6n+3)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản

Tam giác
Xem chi tiết
tran trong bac
23 tháng 5 2017 lúc 16:46

gọi a là UCLN của tử và mẫu

suy ra 2n+1 chia hết cho a suy ra 6n+3 chia hết cho a

ta có 3n+2 chia hết cho a suy ra 6n +4 chia hết cho a

từ hai điều trên suy ra

(6n+4)-(6n+3) chia hết cho a

suy ra 1 chia hết cho a

suy ra a=1

suy ra đpcm

Đinh Hà
11 tháng 4 2016 lúc 19:18

Chưa phân loại tick nhé bạnhiu

Trần Thị Hương
23 tháng 5 2017 lúc 19:11

Gọi ƯCLN (2n+1,3n+2)=d

\(\Rightarrow2n+1⋮d\)

\(3n+2⋮d\)

\(\Rightarrow3n+2-2n+1⋮d\)

\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(6n+4-6n+3⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy ƯCLN \(\left(2n+1,3n+2\right)=1\Leftrightarrow\dfrac{2n+1}{3n+2}\) là p/s tối giản \(\left(dpcm\right)\)

Đỗ Thảo Vii
Xem chi tiết
soyeon_Tiểu bàng giải
20 tháng 7 2016 lúc 15:48

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Nguyễn Hưng Phát
20 tháng 7 2016 lúc 15:45

Gọi UCLN(2n+1,3n+2)=d

Ta có: 2n+1 chia hết cho d            \(\Rightarrow\)3(2n+1) chia hết cho d             \(\Rightarrow\)6n+3 chia hết cho d

          3n+2 chia hết cho d            \(\Rightarrow\)2(3n+2) chia hết cho d             \(\Rightarrow\)6n+4 chia hết cho d

\(\Rightarrow\)(6n+4)-(6n+3) chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow\)d=1

Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản

Sakura Scarlet
20 tháng 7 2016 lúc 15:47

gọi d là UCLN (2n+1;3n+2).

theo đề bài ta có:

2n+1 chia hết cho d =>6n+3 chia hết cho d

3n+2 chia hết cho d => 6n+4 chia hết cho d

=>1 chia hết cho => d=1

=>dpcm

. ủng hộ mik nha! ^.^

Linh Le
Xem chi tiết
Quách Thị Anh Thư
30 tháng 7 2016 lúc 15:44

gọi ước chung lớn nhất của 2n+1 và 3n+1 là d (d thuộc  N*)

=> 2n+1 chia hết cho d (1) , 3n+1 chia hết cho d (2)

Từ (1) => 3.(2n+1) chia hết cho d => 6n+3 chia hết cho d (3)

Từ (2) => 2( 3n+1) chia hết cho d => 6n+2 chia hết cho d (4)

 Từ (3) và (4) =>( 6n+3) -(6n+2) chia hết cho d

=> 1chia hết cho d (5)

Mà d thuộc N* (6)

Từ (5) và (6) => d=1

 Vậy ƯCLN ( 2n+1,3n+1) =1

=> ĐCCM

My love Third Kamikaze
Xem chi tiết
tth_new
25 tháng 4 2017 lúc 8:28

Ta có: \(\frac{2n+1}{3n+2}=\frac{2+1}{3+2}=\frac{3}{5}\)

Vì phân số \(\frac{3}{5}\)là phân số tối giản nên \(\frac{2n+1}{3n+2}\) là phân số tối giản.

  Đs:

Nam Dốt Toán
Xem chi tiết
Quỳnh Anh Phạm
11 tháng 4 2023 lúc 20:34

gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:

2n+1 chia hết cho d=>6n+3 chia hết cho d

3n+2 chia hết cho d=>6n+4 chia hết cho d

=>1 chia hết cho d=>d=1

vậy ...

Võ Ngọc Phương
11 tháng 4 2023 lúc 20:41

Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)

Nên 2n+1⁝ d và 3n+2 ⁝ d

⇒ 3(2n+1) ⁝ d và 2(3n+2)

⇒ 6n+3 ⁝ d và 6n+4 ⁝ d

⇒ ( 6n+4 - 6n+3) ⁝ d

⇒ 1⁝ d

⇒ d= 1

Vậy:..

Chúc bạn học tốt

Nguyễn Tuấn Phát
11 tháng 4 2023 lúc 20:43

ssss

Xem chi tiết
cà thái thành
30 tháng 4 2019 lúc 15:16

https://h.vn/hoi-dap/question/39186.html

Công chúa đáng yêu
30 tháng 4 2019 lúc 15:19

Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )

=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d  

=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d

=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d 

=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d 

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1 

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Tẫn
30 tháng 4 2019 lúc 15:23

Gọi d là ƯC của 2n + 1 và 3n + 3

Ta có: 2n + 1 ⋮ d => 6n + 3 ⋮ d

Và 2n + 2 ⋮ d => 6n + 4 ⋮ d

Do đó:

 (6n + 4) - (6n + 3) ⋮ d

=> (6n - 6n) (4 - 3) ⋮ d

=> 1 ⋮ d => d = 1

Hay ƯC(2n + 1, 3n + 2) = 1 

=> 2n + 1 / 3n + 2 tối giản