\(a^4+b^4+c^4+d^4>=4abcd\)CM bất đẳng thức
1) Bất đẳng thức Giôn-xi
Cm: a4+b4+c4+d4 ≥4abcd
Ta có:
\(a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2+2a^2b^2+2c^2d^2-4abcd\)
\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2\ge0\)
\(\Rightarrow a^4+b^4+c^4+d^4-4abcd\ge0\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\pm b\\c=\pm d\\ab=cd\end{matrix}\right.\)
Cm bất đẳng thức sau vs a, b, c, d >0.
A^4+b^4>_ ab(a^2+b^2)
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
cm nếu a^4+b^4+c^4 +d^4=4abcd thì a=b=c=d\
Cho 0 <a,b,c <1. CM có ít nhất 1 bất đẳng thức sai trong ba bất đẳng thức sau:
a (1-b)>1/4
b (1-c)>1/4
c (1-a)>1/4
Bài 2: Cho a,b,c,d∈ R. Chứng minh rằng a2+b2 ≥ 2ab (1). Áp dụng chứng minh các bất đẳng thức sau:
a) a4+b4+c4+d4 ≥ 4abcd
b) (a2+1)(b2+1)(c2+1) ≥ 8abc
c) (a2+4)(b2+4)(c2+4)(d2+4) ≥ 256abcd
a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .
-> Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)
- Cộng 2 bpt lại ta được :
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)
- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)
=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)
b, CMTT câu 1 .
- Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
- Nhân 3 bpt trên lại ta được :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)
Cm bất đẳng thức sau:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{3}\ge\frac{3\sqrt[3]{a^2b^2c^2}\left(a+b+c\right)\left(a+b+c\right)}{9}\)
\(\ge\frac{\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}\left(a+b+c\right)}{3}=abc\left(a+b+c\right)\)
minh cung viet nhung bai day dai lam khong danh duoc
Cho a, b, c, d là các số bất kì. Chứng minh rằng:
a4+b4+c4+d4 ≥ 4abcd
Áp dụng bất đẳng thức Cô-si cho các số dương \(a^4,b^4,c^4,d^4\), ta có:
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}\)
\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2\cdot2c^2d^2}=2\cdot2\left|abcd\right|=4\left|abcd\right|\ge4abcd\)
Dấu "=" khi a = b = c = d.
Cách khác áp dụng cho 4 số luôn:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\).
Vậy......................
Áp dụng BĐT Cô-si ta có:
a4 + b4 ≥ 2a2b2
c4 + d4 ≥ 2c2d2
⇒ a4 + b4 + c4 + d4 ≥ 2a2b2 + 2c2d2
⇔ VT ≥ 2\(\sqrt{4\text{a}^2b^2c^2d^2}\) = 4abcd = VP
Vậy a4 + b4 + c4 + d4 ≥ 4abcd
CM: Bất đẳng thức: \(8.\left(a^4+b^4\right)\ge\left(a+b\right)^4\)
Áp dụng bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) ta có:
\(8\left(a^4+b^4\right)\ge4\left(a^2+b^2\right)^2=\left[2\left(b^2+c^2\right)\right]^2\ge\left(a+b\right)^4\).
cm rằng :a4+b4+c4+d4=4abcd