Biết hai cạnh của một hình bình hành có phương trình x-y = 0 và x+3y-8=0 , tọa độ một đỉnh là (−2;2) . Viết phương trình các cạnh còn lại của hình bình hành.
cho hình bình hành có tọa độ một đỉnh là (4,-1) . Biết phương trình các đường thẳng chứa 2 cạnh là x-3y=0 và 2x+5y+6=0 . Tìm tọa độ 3 đỉnh conf lại của hình bình hành đó .
Cho hình bình hành ABCD. Biết I (7/2;5/2) là trung điểm của cạnh CD, D (3;3/2) và đường phân giác góc BAC có phương trình là d: x-y+1=0. Xác định tọa độ đỉnh B.
Tìm tọa độ các đỉnh của tam giác trong trường hợp sau:
a, Biết A(2;2) và hai đường cao có phương trình d1:x+y-2=0 ; d2: 9x-3y+4=0
b, biết A(4;-1), phương trình đường cao kẻ từ B là \(\Delta\):2x-3y=0; phương trình trung tuyến đi qua đỉnh C là \(\Delta'\) : 2x+3y=0
Trong mặt phẳng hệ tọa độ Oxy , cho hình chữ nhật ABCD tâm O. Biết phương trình đường thẳng AB:x--y+5=0 và trung điểm M của cạnh BC thuộc đường thẳng x+3y-6=0, xác định tọa độ các đỉnh của hình chữ nhật ABCD
Phương trình đường thẳng qua O và song song AB có dạng:
Tọa độ M là nghiệm của hệ:
Phương trình đường thẳng BC qua M, nhận là 1 vtpt có dạng:
Tọa độ B là nghiệm của hệ:
M là trung điểm BC tọa độ C
O là trung điểm AC tọa độ A
O là trung điểm BD
Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó
\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C
Giả sử d1 là đường cao kẻ từ B
Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:
\(x-y+m=0\)
Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)
\(\Rightarrow x-y=0\left(AC\right)\)
\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)
\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)
Tương tự ta tìm được \(B=\left(-1;3\right)\)
trong mặt phẳng tọa độ oxy cho hình bình hành ABCD, biết đường chéo AC và BD lần lượt nằm trên 2 đường thẳng d1: x - 5y + 4 = 0, d2: x + 3y -3=0. Phương trình đường thẳng AB: x-y+9=0. tìm tọa độ điểm C.
Giả sử hình thoi là ABCD với \(A\left(0;1\right)\)
Do tọa độ A thỏa \(x+7y-7=0\) nên đó là cạnh chứa A, ko mất tính tổng quát, giả sử đó là cạnh AB
Tọa độ A ko thỏa pt đường chéo nên đó là đường chéo BD
\(\Rightarrow\) Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+7y-7=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow B\left(7;0\right)\)
Phương trình AC qua A vuông góc BD: \(2\left(x-0\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+1=0\)
Tọa độ tâm I là nghiệm: \(\left\{{}\begin{matrix}x+2y-7=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(1;3\right)\)
I là trung điểm AC \(\Rightarrow C\left(2;5\right)\)
I là trung điểm BD \(\Rightarrow D\left(-5;-3\right)\)
Biết tọa độ các đỉnh, bạn tự viết pt các cạnh nhé
Cho tam giác ABC , tìm tọa độ các đỉnh của tam giác trong các trường hợp sau a) Biết A(2,2) và hai đường cao có phương trình d1 : x+ y -2 =0 và d2 : 9x-3y+4=0
b) Biết A (4,-1) phương trình đường cao kẻ từ B là d3 : 2x - 3y =0 phương trình trung điểm đi quua điểm d4 : 2x + 3y =0