Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không Tên
Xem chi tiết
Ship Mều Móm Babie
Xem chi tiết
Trần Thiên Kim
Xem chi tiết
Mỹ Duyên
6 tháng 7 2017 lúc 22:00

Khá dễ!

Ta có: \(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

<=> \(a^4+a^3b+ab^3+b^4\le a^4+b^4+a^4+b^4\)

<=> \(a^3b+ab^3\le a^4+b^4\)

<=> \(a^4-a^3b+b^4-ab^3\ge0\)

<=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

<=> \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)

<=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (Luôn đúng)

=> đpcm

Trần Thiên Kim
6 tháng 7 2017 lúc 21:52
Phùng Tiến Thành
Xem chi tiết
Hà Nguyễn Thu
Xem chi tiết
Feed Là Quyền Công Dân
10 tháng 8 2017 lúc 13:29

Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Lợi dụng BĐT Cauchy-Schwarz tao cso:

\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)

\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)

Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:

\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)

Lightning Farron
10 tháng 8 2017 lúc 13:56

Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)

Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\le\sqrt{9}=3\le a^2+b^2+c^2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)

\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)

\(=4\left(a^2+b^2+c^2\right)=VP^2\)

Xảy ra khi \(a=b=c=1\)

btkho
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 0:05

\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)

\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)

Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)

Ta có: \(b^3+2-b\ge3b-b=2b>0\)

\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)

\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)

\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)

Nguyễn Khánh Ly
Xem chi tiết
 Mashiro Shiina
17 tháng 4 2019 lúc 11:50

\(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}=\frac{a^4}{a^2+ab}+\frac{b^4}{b^2+bc}+\frac{c^4}{c^2+ac}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)

\(\Rightarrow\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\ge\frac{a^2+b^2+c^2}{2}\Leftrightarrow a^2+b^2+c^2\le2\left(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\right)\) (đpcm)

\("="\Leftrightarrow a=b=c\)

Hoai Bao Tran
Xem chi tiết
Lightning Farron
7 tháng 3 2018 lúc 18:25

Bđt schur

Akai Haruma
7 tháng 3 2018 lúc 23:28

Lời giải:

Bài này thực chất không cần thiết phải có điều kiện \(1\leq a,b,c\leq 2\)

Chỉ cần \(a,b,c>0\) thôi em nhé.

Ta có: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow \frac{9abc}{3\sqrt[3]{abc}}\geq \frac{9abc}{a+b+c}\Leftrightarrow 3\sqrt[3]{a^2b^2c^2}\geq \frac{9abc}{a+b+c}\)

Do đó:
\(a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}(1)\)

Ta đi cm \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)(2)\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ac(a+c)\)

Đây chính là BĐT Schur bậc 3 (luôn đúng)

Từ (1); (2) \(\Rightarrow a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\geq 2(ab+bc+ac)\)

(đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

Trần Thanh Phương
15 tháng 3 2020 lúc 19:39

Akai Haruma: cần chứ chị .____.

Đặt \(\sqrt[3]{a^2}=x;\sqrt[3]{b^2}=y;\sqrt[3]{c^2}=z\) ( \(x,y,z\in\left[1;\sqrt[3]{4}\right]\) )

Khi đó: \(a^2=x^3;b^2=y^3;c^2=z^3\)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\), khi đó ta có:

\(x\left(x-y\right)^2+z\left(y-z\right)^2+\left(z+x-y\right)\left(x-y\right)\left(y-z\right)\ge0\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

Áp dụng BĐT Cô-si: \(xy\left(x+y\right)\ge2xy\sqrt{xy}=2\sqrt{x^3y^3}\)

Tương tự: \(yz\left(y+z\right)\ge2\sqrt{y^3z^3};zx\left(z+x\right)\ge2\sqrt{z^3x^3}\)

Do đó: \(x^3+y^3+z^3+3xyz\ge2\left(\sqrt{x^3y^3}+\sqrt{y^3z^3}+\sqrt{z^3x^3}\right)\)

Hay \(a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\ge2\left(ab+bc+ca\right)\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\).

Khách vãng lai đã xóa
Quang Đẹp Trai
Xem chi tiết
Lê Song Phương
18 tháng 6 2023 lúc 8:13

 Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).

 Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)