Cho \(a^2+b^2\le2\) CMR \(a+b\le2\left(a+b\right)^3\)
Cho a,b > 0. CMR:
\(\frac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(1+b^2\right)}\le2\)
Cho \(a^2+b^2\le2\) Chứng minh \(a+b\le2\left(a+b\right)^3\)
CMR: \(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
Khá dễ!
Ta có: \(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
<=> \(a^4+a^3b+ab^3+b^4\le a^4+b^4+a^4+b^4\)
<=> \(a^3b+ab^3\le a^4+b^4\)
<=> \(a^4-a^3b+b^4-ab^3\ge0\)
<=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
<=> \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)
<=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (Luôn đúng)
=> đpcm
@Lê Văn Huy @Ace Legona @Nguyễn Huy Tú @Akai Haruma Mỹ Duyên..... giúp vs ~~ T_T pờ li :(((
Cho a, b>0 và a+b=2.CMR: \(a^2\cdot b^2\cdot\left(a^2+b^2\right)\le2\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca\ge3\end{matrix}\right.\)
cmr \(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\le2\left(a^2+b^2+c^2\right)\)
Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Lợi dụng BĐT Cauchy-Schwarz tao cso:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)
Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:
\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)
Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)
Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\le\sqrt{9}=3\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)
\(=4\left(a^2+b^2+c^2\right)=VP^2\)
Xảy ra khi \(a=b=c=1\)
Cho \(a,b,c>0\). Chứng minh \(\dfrac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(b^3+1\right)}\le2\)
\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)
\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)
Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)
Ta có: \(b^3+2-b\ge3b-b=2b>0\)
\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)
\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)
\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)
Cho a,b,c là những số thực dương . CMR
\(a^2+b^2+c^2\le2\left(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\right)\)
\(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}=\frac{a^4}{a^2+ab}+\frac{b^4}{b^2+bc}+\frac{c^4}{c^2+ac}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
\(\Rightarrow\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\ge\frac{a^2+b^2+c^2}{2}\Leftrightarrow a^2+b^2+c^2\le2\left(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\right)\) (đpcm)
\("="\Leftrightarrow a=b=c\)
cho \(1\le a,b,c\le2\) CMR: \(a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\ge2\left(ab+bc+ca\right)\)
Lời giải:
Bài này thực chất không cần thiết phải có điều kiện \(1\leq a,b,c\leq 2\)
Chỉ cần \(a,b,c>0\) thôi em nhé.
Ta có: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow \frac{9abc}{3\sqrt[3]{abc}}\geq \frac{9abc}{a+b+c}\Leftrightarrow 3\sqrt[3]{a^2b^2c^2}\geq \frac{9abc}{a+b+c}\)
Do đó:
\(a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}(1)\)
Ta đi cm \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)(2)\)
\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ac(a+c)\)
Đây chính là BĐT Schur bậc 3 (luôn đúng)
Từ (1); (2) \(\Rightarrow a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\geq 2(ab+bc+ac)\)
(đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
Akai Haruma: cần chứ chị .____.
Đặt \(\sqrt[3]{a^2}=x;\sqrt[3]{b^2}=y;\sqrt[3]{c^2}=z\) ( \(x,y,z\in\left[1;\sqrt[3]{4}\right]\) )
Khi đó: \(a^2=x^3;b^2=y^3;c^2=z^3\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\), khi đó ta có:
\(x\left(x-y\right)^2+z\left(y-z\right)^2+\left(z+x-y\right)\left(x-y\right)\left(y-z\right)\ge0\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
Áp dụng BĐT Cô-si: \(xy\left(x+y\right)\ge2xy\sqrt{xy}=2\sqrt{x^3y^3}\)
Tương tự: \(yz\left(y+z\right)\ge2\sqrt{y^3z^3};zx\left(z+x\right)\ge2\sqrt{z^3x^3}\)
Do đó: \(x^3+y^3+z^3+3xyz\ge2\left(\sqrt{x^3y^3}+\sqrt{y^3z^3}+\sqrt{z^3x^3}\right)\)
Hay \(a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\ge2\left(ab+bc+ca\right)\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\).
Cho 2 số thực a,b thỏa mãn điểu kiện \(a^2+b^2\le2\).CMR \(a+b\le2\)
Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).
Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)