Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng \(a=b=c\) nếu \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
a) Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
b) Cho a, b, c khác nhau đôi một. Chứng minh rằng:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\cdot\left(a^2+b^2+c^2-ab-ac-bc\right)\). Chứng minh rằng a=b=c .
Giúp mik vs m.n @!
Cho a,b,c,d là các số thức . Chứng minh rằng :
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Chứng minh rằng: \(\dfrac{a^2}{\left(b-c\right)^2}+\dfrac{b^2}{\left(c-a\right)^2}+\dfrac{c^2}{\left(a-b\right)^2}\ge2\)
Mọi người ơi giúp em 3 bài này với... E làm mãi không được ..
Mọi người giúp em với. Em cảm ơn nhiều ạ.
1. Cho các số a,b,c,d thỏa mãn \(a^2+b^2+\left(a+b\right)^2=c^2+d^2+\left(c+d\right)^2\)
Chứng minh rằng :\(a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
2. Cho các số a,b,c thỏa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị của biểu thức \(A=a^{2014}+b^{2015}+c^{2016}\)
3. Giải phương trình : \(\left(3x^2+x+2015\right)^2+4\left(x^2+1008\right)^2=4\left(x^2-1008\right)\left(3x^2+x+2015\right)\)
1,Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\) và \(a+b+c+ab+ac+bc=6\).
Tính \(A=\frac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}\)
2, Cho \(a,b,c\ne0\) thỏa mãn \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\),
Chứng minh : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{3}{4}+\frac{ab}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(b+c\right)\left(c+a\right)}+\frac{ca}{\left(c+a\right)\left(a+b\right)}\)
HELP ME....MAI MÌNH NỘP RỒI
mình cảm ơn
chứng minh bất đẳng thức: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\ge0\)
BT1:Cho a,b,c là các số thực. Chứng minh rằng:
a2+b2+c2>=ab+bc+ac+\(\dfrac{\left(a+b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
BT2:Cho a,b là các số dương thỏa mãn \(\dfrac{a}{1+a}+\dfrac{2b}{1+b}=1\). Chứng minh rằng ab2=<1/8
MÌNH ĐANG CẦN GẤP. GIÚP MÌNH VỚI