Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nue nguyen
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Phùng Minh Quân
24 tháng 7 2020 lúc 21:50

đại khái giống Ngọc thôi, sửa 1 số lỗi 

\(P=1-2\left(ab^2+bc^2+ca^2\right)-2abc\)

\(b=mid\left\{a;b;c\right\}\)\(\Rightarrow\)\(ab^2+ca^2\le a^2b+abc\)

\(\Rightarrow\)\(P\le1-2a^2b-2bc^2-4abc=1-2b\left(c+a\right)^2\le1-8\left(\frac{b+\frac{c+a}{2}+\frac{c+a}{2}}{3}\right)^3=\frac{19}{27}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 7 2020 lúc 16:51

ta có ab+bc+ca=(a+b+c)(ab+bc+ca)=(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc

=> a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=1-2(ab+bc+ca)=1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]

do đó P=2(a2b+b2c+c2a)+1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]+4abc

=1-2(ab2+bc2+ca2)

không mất tính tổng quát giả sử a =<b=<c. suy ra

a(a-b)(b-c) >=0 => (a2-a)(b-c) >=0

=> a2b-a2c-ab2+abc >=0 => ab2+ca2=< a2b+abc

do đó ab2+bc2+ca2+abc=(ab2+ca2)+bc2+abc =< (a2b+abc)+b2c+abc=b(a+c)2

với các số dương x,y,z ta luôn có: \(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left[\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right]\ge0\)

=> \(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\left(\frac{x+y+z}{3}\right)^2\)(*)

dấu "=" xảy ra khi và chỉ khi x=y=z

áp dụng bđt (*) ta có:

\(b\left(a+c\right)^2=ab\left(\frac{a+c}{2}\right)\left(\frac{a+c}{2}\right)\le4\left(\frac{b+\frac{a+c}{2}+\frac{a+c}{2}}{3}\right)^3=4\left(\frac{a+b+c}{3}\right)^3=\frac{4}{27}\)

=> P=1-2(ab2+bc2+ca2+abc) >= 1-2b(a+c)2 >= 1-2.4/27=19/27

vậy minP=19/27 khi x=y=z=1/3

Khách vãng lai đã xóa
Phùng Minh Quân
24 tháng 7 2020 lúc 19:47

@ Hai Ngox lưu ý a,b,c hoán vị nên chỉ được giả sử \(b=mid\left\{a;b;c\right\}\) , với lại bài sai nhiều quá, xem lại nhé

Khách vãng lai đã xóa
Hoàng Đức Khải
Xem chi tiết
Hoàng Phú Huy
14 tháng 3 2018 lúc 17:48

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

Hoàng Đức Khải
14 tháng 3 2018 lúc 17:50

tiếp đi bạn huy

Hoàng Đức Khải
14 tháng 3 2018 lúc 17:52

Ê mình đâu cho a+b+c=3

zZz Cool Kid_new zZz
Xem chi tiết
zZz Cool Kid zZz
9 tháng 8 2019 lúc 9:38

\(=\left(a+b-c\right)\left(a-b\right)^2\) nha ! 

P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.

KAl(SO4)2·12H2O
9 tháng 8 2019 lúc 9:40

Giỏi quá à :3

chuyên toán thcs ( Cool...
9 tháng 8 2019 lúc 9:43

Trả lời

Ở phần kết quả bạn vẫn chưa thu gọn hết đâu nha

\(=\left(a+b+c\right).\left(a-b\right)^2\)

Mk góp ý thôi mong mọi người đừng có đáp gạch đáp đá nha 

Study well 

missing you =
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 18:33

Chuẩn hóa \(a+b+c=3\)

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\dfrac{a^2+6a+9}{3\left(a^2-2a+3\right)}=\dfrac{1}{3}\left(1+\dfrac{8a+6}{\left(a-1\right)^2+2}\right)\le\dfrac{1}{3}\left(1+\dfrac{8a+6}{2}\right)\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{3}\left(3+\dfrac{8\left(a+b+c\right)+18}{2}\right)=8\) (đpcm)

Đức Hiếu Nguyễn
Xem chi tiết
Kiệt Nguyễn
9 tháng 6 2020 lúc 13:58

Không mất tính tổng quát, chuẩn hóa a + b + c = 1

Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)

Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*

Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
Trần Phúc Khang
25 tháng 7 2019 lúc 15:44

Chuẩn hóa ta có : \(a+b+c=3\)

=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)

Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)

<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)

<=> \(4a^3-5a^2-2a+3\ge0\)

<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng

Khi đó 

\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

ミ★Zero ❄ ( Hoàng Nhật )
2 tháng 5 2020 lúc 19:50

bài lớp 10 em chưa hok nha anh

Khách vãng lai đã xóa
Neet
Xem chi tiết
Lightning Farron
16 tháng 4 2017 lúc 16:27

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

Lightning Farron
16 tháng 4 2017 lúc 15:48

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)

Lightning Farron
16 tháng 4 2017 lúc 15:50

Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến:Gazeta Matematia

còn câu này là USAMO 2003

Toàn đề máu mặt :)

Aurora
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Akai Haruma
30 tháng 5 2020 lúc 12:35

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$