\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{99.100}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
Ta có: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(B\) \(=\) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(B\) \(=\) \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B\) \(=\) \(1-\dfrac{1}{100}\)
\(B\) \(=\) \(\dfrac{99}{100}\)
P=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{99.100}\)
\(P=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ P=1-\dfrac{1}{100}\\ P=\dfrac{99}{100}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
bn ghi thêm dẫu = zô trc dùm mình ha
Tính tổng
$\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ + .... + $\dfrac{1}{99.100}$
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
Học từ lớp 4 rồi :V
\(x-\dfrac{1}{1.2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-...-\dfrac{1}{98.99}=\dfrac{1}{100}+\dfrac{1}{99.100}\)
Lời giải:
$x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}+\frac{1}{100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}+\frac{1}{100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}$
$=1$
`# \text {DNamNgV}`
\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{98\cdot99}=\dfrac{1}{100}+\dfrac{1}{99\cdot100}\)
\(\Rightarrow x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}\right)=\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow x-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)=\dfrac{1}{99}\)
\(\Rightarrow x-\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}\)
\(\Rightarrow x-\dfrac{98}{99}=\dfrac{1}{99}\)
\(\Rightarrow x=\dfrac{1}{99}+\dfrac{98}{99}\)
\(\Rightarrow x=\dfrac{99}{99}\)
\(\Rightarrow x=1\)
Vậy, `x = 1.`
TÍNH GIÚP MÌNH
A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{99.100}\)
THANK YOU!!!❤
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}-\dfrac{1}{100}\)
=\(\dfrac{99}{100}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Tính giá trị biểu thức : \(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)
\(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(P=1+\left(\dfrac{-1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+..+\left(\dfrac{-1}{99}+\dfrac{1}{99}\right)+\dfrac{-1}{100}\)
\(P=1+0+0+....+0+\dfrac{-1}{100}\)
\(P=1+\dfrac{-1}{100}\)
\(P=\dfrac{99}{100}\)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
\(\dfrac{x}{200}\)= \(\dfrac{1^2}{1.2}\) . \(\dfrac{2^2}{2.3}\) . \(\dfrac{3^2}{3.4}\) . .... .\(\dfrac{99^2}{99.100}\)
bạn hãy rút gọn vế phải: x/200=1/2.2/3.3/4......98/99.99/100
Rồi sẽ có cái phương trình:x/200=1/100
từ đó suy ra:x/200=2/200 =>x=2
:)))))
\(\dfrac{x}{200}=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{100}\)
\(\Leftrightarrow x=2\)
Chứng tỏ rằng \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{99.100}=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)