\(\dfrac{4}{5142}-\dfrac{4}{5143}\)
Tính bằng cách hợp lý :
a, (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
b,(1+ \(\dfrac{1}{2}\)) x (1 +\(\dfrac{1}{3}\)) x (1+\(\dfrac{1}{4}\)) x ...... x (1 +1/2010) x (1+ 1/2011)
bn nhanh giúp mình m tick cho mình đang cần gấp trong sáng nay. Thanks các bạn nhìu!
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006
Tính :
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{4}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)
| \(\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{4}{3}+\dfrac{19}{3}=\) | \(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{2}+\dfrac{8}{2}+\dfrac{9}{4}\)= |
HELP
\(\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{4}{3}+\dfrac{19}{3}=\dfrac{1+2+4+19}{3}=\dfrac{26}{3}\)
\(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{4}+\dfrac{8}{2}+\dfrac{9}{4}\)
=\(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{4}+\dfrac{16}{4}+\dfrac{9}{4}\)
=\(\dfrac{3+4+5+6+x+16+9}{4}=\dfrac{43+x}{4}\)
Cảm ơn và chúc Lê Minh Quang học tốt nhé!
Mình đã tick rùi nha
Thanks
1/3+2/3+4/3+19/3=26/3
3/4+4/4+5/4+6/4+x/2+8/2+9/4=43+x/4
\(\dfrac{1}{3}+\dfrac{2}{3}=\)
\(\dfrac{4}{5}+\dfrac{5}{6}=\)
\(\dfrac{4}{5}-\dfrac{3}{5}=\)
\(\dfrac{9}{8}-\dfrac{4}{2}=\)
\(\dfrac{8}{5}x\dfrac{5}{8}=\)
\(\dfrac{6}{7}x\dfrac{4}{7}=\)
\(\dfrac{4}{5}:\dfrac{4}{5}=\)
\(\dfrac{5}{5}:\dfrac{5}{5}=\)
a,
\(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
\(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{49}{30}\)
\(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{1}{5}\)
\(\dfrac{8}{5}x\dfrac{5}{8}=\dfrac{1}{1}=1\)
\(\dfrac{6}{7}x\dfrac{4}{7}=\dfrac{24}{49}\)
\(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}x\dfrac{5}{4}=\dfrac{1}{1}=1\)
\(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}x\dfrac{5}{5}=\dfrac{1}{1}=1\)
1) \(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{1+2}{3}=\dfrac{3}{3}=1\)
2) \(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{24+25}{30}=\dfrac{49}{30}\)
3) \(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{4-3}{5}=\dfrac{1}{5}\)
4) \(\dfrac{9}{8}-\dfrac{4}{2}=\dfrac{9}{8}-2=\dfrac{9}{8}-\dfrac{16}{8}=-\dfrac{7}{8}\)
5) \(\dfrac{8}{5}\times\dfrac{5}{8}=\dfrac{8\times5}{5\times8}=\dfrac{40}{40}=1\)
6) \(\dfrac{6}{7}\times\dfrac{4}{7}=\dfrac{6\times4}{7}=\dfrac{24}{7}\)
7) \(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{5}{4}=\dfrac{4\times5}{5\times4}=\dfrac{20}{20}=1\)
8) \(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}\times\dfrac{5}{5}=\dfrac{5\times5}{5\times5}=\dfrac{25}{25}=1\)
1, \(\dfrac{3}{4}\). ( \(\dfrac{2}{5}\) - \(\dfrac{1}{15}\)) +\(\dfrac{3}{4}\)
2, \(\dfrac{4}{9}\). (\(\dfrac{-13}{3}\)) + \(\dfrac{4}{3}\). \(\dfrac{40}{9}\)
3, \(\dfrac{4}{9}\) - \(\dfrac{2}{3}\). ( \(\dfrac{4}{5}\)+\(\dfrac{1}{2}\) )
giúp mình nha cảm ơn
1, \(\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}+1\right)\)
\(=\dfrac{3}{4}.\dfrac{6-1+15}{15}=\dfrac{3}{4}.\dfrac{20}{15}=\dfrac{3}{4}.\dfrac{4}{3}=1\)
2, \(\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{3}.\dfrac{40}{9}=\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{9}.\dfrac{40}{3}\)
\(=\dfrac{4}{9}.\left[\left(-\dfrac{13}{3}\right)+\dfrac{40}{3}\right]=\dfrac{4}{9}.9=4\)
3, \(\dfrac{4}{9}-\dfrac{2}{3}.\left(\dfrac{4}{5}+\dfrac{1}{2}\right)=\dfrac{2}{3}\left(\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{3}.\dfrac{20-24-15}{30}=\dfrac{2}{3}.\left(-\dfrac{19}{30}\right)=-\dfrac{19}{45}\)
1. \(\dfrac{3}{4}.\left(\dfrac{6}{15}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\dfrac{1}{3}+\dfrac{3}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
Thu gọn
S = \(\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+\dfrac{1}{4^4}+\dfrac{1}{4^5}+\dfrac{1}{4^6}+...+\dfrac{1}{4^{29}}+\dfrac{1}{4^{30}}\)
\(S=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{30}}\)
\(\Rightarrow4S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{29}}\)
\(\Rightarrow3S=4S-S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{29}}-\dfrac{1}{4}-\dfrac{1}{4^2}-...-\dfrac{1}{4^{30}}=1-\dfrac{1}{4^{30}}\)
\(\Rightarrow S=\dfrac{1-\dfrac{1}{4^{30}}}{3}\)
\(l,\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(m,\left(3-2\dfrac{1}{3}+\dfrac{1}{4}\right):\left(4-5\dfrac{1}{6}+2\dfrac{1}{4}\right)\)
\(n,F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(p,F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
p: \(F=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
n: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
m: \(=\left(3-\dfrac{7}{3}+\dfrac{1}{4}\right):\left(4-\dfrac{31}{6}+\dfrac{9}{4}\right)\)
\(=\dfrac{36-28+3}{12}:\dfrac{48-62+27}{12}\)
\(=\dfrac{11}{13}\)
a) \(\dfrac{ 3}{ 4 }\)+\(\dfrac{ -7 }{ 5 }\)+\(\dfrac{ 1 }{ 4 }\)+\(\dfrac{ -3 }{ 5 }\) b) \(\dfrac{ 4 }{ 9 }.\dfrac{7 }{ 11 }-\dfrac{4 }{ 11 }.\dfrac{ 2 }{9 } + \dfrac{ 6 }{ 11 }.\dfrac{ 4 }{ 9 }\)
a) 3/4 + (-7/5) + 1/4 + (-3/5)
= (3/4 + 1/4) + (-7/5 - 3/5)
= 1 - 2
= -1
b) 4/9 . 7/11 - 4/11 . 2/9 + 6/11 . 4/9
= 4/9 . (7/11 - 2/11 + 6/11)
= 4/9 . 1
= 4/9
a)
\(\dfrac{3}{4}+\dfrac{-7}{5}+\dfrac{1}{4}+\dfrac{-3}{5}\)
\(=\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{-7}{5}-\dfrac{3}{5}\right)\)
\(=1-2\)
\(=-1\)
b)
\(\dfrac{4}{9}.\dfrac{7}{11}-\dfrac{4}{11}.\dfrac{2}{9}+\dfrac{6}{11}.\dfrac{4}{9}\)
\(=\dfrac{28}{99}-\dfrac{8}{99}+\dfrac{24}{99}\)
\(=\dfrac{28-8+24}{99}\)
\(=\dfrac{44}{99}\)
\(=\dfrac{4}{9}\)
\(A=\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+\dfrac{4}{11}.\dfrac{4}{15}+...+\dfrac{4}{95}.\dfrac{4}{99}\)
A = \(\dfrac{4}{3}\) . \(\dfrac{4}{7}\) + \(\dfrac{4}{7}\) . \(\dfrac{4}{11}\) + \(\dfrac{4}{11}\) . \(\dfrac{4}{15}\) + ... + \(\dfrac{4}{95}\) . \(\dfrac{4}{99}\)
A = \(\dfrac{4.4}{3.7}\) + \(\dfrac{4.4}{7.11}\) + \(\dfrac{4.4}{11.15}\) + ... + \(\dfrac{4.4}{95.99}\)
A = \(\dfrac{16}{3.7}\) + \(\dfrac{16}{7.11}\) + \(\dfrac{16}{11.15}\) + ... + \(\dfrac{16}{95.99}\)
A = 4.( \(\dfrac{4}{3.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{4}{11.15}\) + ... + \(\dfrac{4}{95.99}\))
A = 4.( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{95}\) - \(\dfrac{1}{99}\))
A = 4.(\(\dfrac{1}{3}\) - \(\dfrac{1}{99}\))
A = 4.(\(\dfrac{33}{99}\) + \(\dfrac{-1}{99}\))
A = 4. \(\dfrac{32}{99}\)
A = \(\dfrac{4.32}{99}\)
A = \(\dfrac{128}{99}\)
Vậy A = \(\dfrac{128}{99}\)