Tìm y
(y+125)x2=198
Y+3+y+5=298
Tìm y biết : 5(y-3) = 125
5(y-3) = 125
=> y-3=125:5
=> y-3=25
=> y =25+3
=> y =28
5(y-3) = 125
=> y-3=125:5
=> y-3=25
=> y =25+3
=> y =28
Tìm \(x,y\in N\):
a) 32x+1 . 7y = 9 . 21x
b) \(\dfrac{27^x}{3^{2x-y}}=243\) và \(\dfrac{25^x}{5^{x+y}}=125\)
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
1. 52 x Y + 1 = 125
2. ( 2 x Y +3 )2 = 9
3. ( Y - 4 )3 =64
Tìm Y
Tìm y biết :
a) 2 * y - 1 và 2/7 = 3 và 5/7
b) ( 125% + 3 và 3/4 ) * ( y - 2 ) = 25
c) ( 1/25 + 3/5 : 5/8 ) * y - 1 = 2011
Giúp mình với nhé ^ ^ !
Tìm y 125*y-12*y-13*y=5.208.000 chi tiết nhất có thể ạ<3
125*y-12*y-13*y=5.208.000
(125-12-13)*y=5208000
100*y=5208000
y=5208000:100
y=52080
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
Tìm các số x,y,z biết:
a) x:y = 2:5 và 2x - y = 3
b) x/2 = y/3; y/4 = z/7 và 2x - y + z =50
c) x/2 = y/3 = z/4 và x2 - y2 + 2z2 = 108
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
Bài 1 Viết Tỉ lệ thức từ 4 số sau 5 ; 25 ; 1 ; 125 ?
Bài 2: Cho x; y ; z lần lượt tỉ lệ với 5 ; 3 ; 2 và x + y – z = 36. Tìm x ; y ; z
x; y ; z lần lượt tỉ lệ với 5 ; 3 ; 2\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{36}{6}=6\)
\(\dfrac{x}{5}=6\Rightarrow x=30\\ \dfrac{y}{3}=6\Rightarrow y=18\\ \dfrac{z}{2}=6\Rightarrow z=12\)
Vậy ...
Bài 1:
\(\dfrac{1}{5}=\dfrac{25}{125};\dfrac{5}{1}=\dfrac{125}{25};\dfrac{1}{25}=\dfrac{5}{125};\dfrac{25}{1}=\dfrac{125}{5}\)
b2
theo đề =>x:y:z=5:3:2
=>\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
theo tc dãy tỉ số bắng nhau, cs
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{36}{6}=6\)
=>x=30;y=18;z=12
Tìm x,y cho biết x/y=198/234 và x + y =72
<=> x/234 = y/198
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
x/234 = y/198 = x + y / 234 + 198 = 1/6
=> x/234 = 1/6 => x = 39
=> y/198 = 1/6 => y = 33
Vậy ...
Từ x/y=198/234
Suy ra x/198=y/234
Ấp dụng tính chất dãy tỉ số bằng nhau ta có
x/198=y/234=x+y/198+234=72/432=1/6
Suy ra x=33 và y=39
Trả lời :
\(\frac{x}{y}\)\(=\)\(\frac{198}{234}\)
=> \(\frac{x}{198}\)\(=\)\(\frac{y}{234}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{198}\)\(=\)\(\frac{y}{234}\)\(=\)\(\frac{x+y}{198+234}\)\(=\)\(\frac{72}{432}\)\(=\)\(\frac{1}{6}\)
=> \(\frac{x}{198}\)\(=\)\(\frac{1}{6}\)\(=\)\(\frac{1}{6}\)\(\times\)\(198\)\(=\)\(33\)
=> \(\frac{y}{234}\)\(=\)\(\frac{1}{6}\)\(=\)\(\frac{1}{6}\)\(\times\)\(234\)\(=\)\(39\)
Vậy x = 33 ; y = 39