cho (3x-4y) ⋮ 3
chứng minh rằng (3x+y) ⋮ 3
cho 3x-2y/ 4=2z- 4x/3= 4y-3z/2 Chứng minh rằng x/2=y/3= z/4
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. Chứng minh rằng: x/2 = y/3 = z/4
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Cho 3x - 2y/4 = 2z - 4x/3 = 4y - 3z/2. Chứng minh rằng: x/2 = y/3 = z/4
Vì \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\frac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{16+9+4}\)
\(=\frac{0}{16+9+4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Bài 1: rút gọn biểu thức
a) (3x+4y-5z) (3x-4y+5z)
b) (3a-1)2+2 (92-1)+(3a+1)2
Bài 2:chứng minh rằng
(x+y+z)3=x3+y3+z3+3(x+y) (y+z) (z+x)
Bài 1:
a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)
\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)
b.
\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)
Bài 2:
\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)
\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)
\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)
\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)
\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)
Cho 5z - 3y/4 = 3x - 4z/5 = 4y - 5x/3. Chứng minh rằng x : y : z = 4 : 5 : 3
Giúp mình với, mình cần gấp
mik mới lớp 5 =]]
nên ko biết =]]]]]
=]]]]]]]]
=)))))))))))))
bài này của bạn chx đủ đk hay sao ý,xem lại đề đi
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. Chứng minh rằng: x/2 = y/3 = z/4
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\dfrac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x=8y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\6z-12x=0\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\\8y=6z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)
Chứng minh rằng: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
suy ra:
\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)
Vậy
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
5) cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\). chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
cho x,y thuộc N thoả mãn(3x+5y)(x+4y)chia hết cho 7.Chứng minh rằng (3x+5y)(x+4y) chia hết cho 49
Bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556