Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
🍀 Bé Bin 🍀
Xem chi tiết
Trên con đường thành côn...
16 tháng 7 2021 lúc 14:16

undefined

le bui trung thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 21:38

b: \(\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{7}+2-\sqrt{7}+\sqrt{3}=2+\sqrt{3}\)

 

Nguyễn ngọc Khế Xanh
Xem chi tiết
Thị Thư Nguyễn
3 tháng 10 2021 lúc 16:24

a)2^6=8^2

b)5^3<3^5

༺ミ𝒮σɱєσиє...彡༻
3 tháng 10 2021 lúc 16:27

a) \(2^6\) và \(8^2\)

   \(2^6=\left(2^2\right)^3\)

  \(8^2=\left(2^3\right)^2\)\(=2^6\)

 \(\Rightarrow\) \(2^6=8^2\)

 

thien kim nguyen
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 19:03

a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)

Lương Ngọc Anh
Xem chi tiết
Gia Huy
22 tháng 6 2023 lúc 22:12

a)

Có: 

\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)

Vì \(\sqrt{117}>\sqrt{116}\)  nên \(3\sqrt{13}>2\sqrt{29}\)

b)

Có:

\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)

\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)

Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\)  nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)

c)

Có:

\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)

\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)

Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)

d)

Có:

\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)

\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)

lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)

 \(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)

Tuệ Lâm Nguyễn
Xem chi tiết
Toru
26 tháng 8 2023 lúc 20:27

\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)

\(b,8^5=32768\)

\(6^6=46656\)

Vì \(32768< 46656\) nên \(8^5< 6^6\)

\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)

#Ayumu

Tuệ Lâm Nguyễn
2 tháng 9 2023 lúc 20:16

loading...

tamanh nguyen
Xem chi tiết
Lấp La Lấp Lánh
8 tháng 11 2021 lúc 9:02

a) \(2=\sqrt{4}>\sqrt{3}\)

b) \(6=\sqrt{36}< \sqrt{41}\)

c) \(7=\sqrt{49}>\sqrt{47}\)

Nguyên Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 9 2021 lúc 19:01

\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)

\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 19:03

Bài 2: 

a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)

\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)

\(=-\dfrac{3}{5}\)

b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)

\(\Leftrightarrow8x-1=5\)

\(\Leftrightarrow8x=6\)

hay \(x=\dfrac{3}{4}\)

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 19:04

Bài 1: 

a: \(-2^{30}=-8^{10}\)

\(-3^{30}=-27^{10}\)

mà 8<27

nên \(-2^{30}>-3^{30}\)

b: \(35^5=35^5\)

\(6^{10}=36^5\)

mà 35<36

nên \(35^5< 6^{10}\)

Xem chi tiết
HT.Phong (9A5)
29 tháng 8 2023 lúc 16:24

2) \(-x^2+4x-2\)

\(=-\left(x^2-4x+2\right)\)

\(=-\left(x^2-4x+4-2\right)\)

\(=-\left(x-2\right)^2+2\)

Ta có: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+2\le2\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow-\left(x-2\right)^2+2=2\Leftrightarrow x=2\)

Vậy: GTLN của bt là 2 tại x=2

b) \(\sqrt{2x^2-3}\) (ĐK: \(x\ge\sqrt{\dfrac{3}{2}}\))

Mà: \(\sqrt{2x^2-3}\ge0\forall x\)

Dấu "=" xảy ra:

\(\sqrt{2x^2-3}=0\Leftrightarrow x=\sqrt{\dfrac{3}{2}}=\dfrac{3\sqrt{2}}{2}\)

Vậy GTNN của bt là 0 tại \(x=\dfrac{3\sqrt{2}}{2}\)

...

Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 20:09

1:

b: \(4\sqrt{5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{75}\)

=>\(4\sqrt{5}>5\sqrt{3}\)

=>\(\sqrt{4\sqrt{5}}>\sqrt{5\sqrt{3}}\)

c: \(3-2\sqrt{5}-1+\sqrt{5}=2-\sqrt{5}< 0\)

=>\(3-2\sqrt{5}< 1-\sqrt{5}\)

d: \(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)

=>\(\dfrac{1}{\sqrt{2006}+\sqrt{2005}}< \dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

=>\(\sqrt{2006}-\sqrt{2005}< \sqrt{2005}-\sqrt{2004}\)

e: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\cdot\sqrt{2003\cdot2005}=4008+2\cdot\sqrt{2004^2-1}\)

\(\left(2\sqrt{2004}\right)^2=4\cdot2004=4008+2\cdot\sqrt{2004^2}\)

=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\)

=>\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)