Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

THẮNG SANG CHẢNH
Xem chi tiết
lilla
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:56

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:57

c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d) Ta có: \(x^2+5y^2-2xy+4y+3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

Hoàng An Nhiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:43

Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x=7

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:01

\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)

\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)

\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)

Nguyễn Sun Sin
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 16:44

\(A=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\dfrac{9\left(x-1\right)}{x-1}}+4=10\)

\(A_{min}=10\) khi \(x=4\)

Nguyễn Huy Tú
19 tháng 1 2021 lúc 6:18

\(A=x+\frac{9}{x-1}+3\Leftrightarrow x-1+\frac{9}{x-1}+3\)

Áp dụng cosi 2 số đầu ta được : 

\(x-1+\frac{9}{x-1}\ge2\sqrt{\left(x-1\right)\frac{9}{x-1}}=6\)

Dễ dàng suy ra : \(A\ge3+6=9\)

Dấu ''='' xảy ra <=> \(x-1=\frac{9}{x-1}\Leftrightarrow\left(x-1\right)^2=9\)

TH1 : \(x-1=3\Leftrightarrow x=4\)( chọn )

TH2 : \(x-1=-3\Leftrightarrow x=-2\)( bỏ vì x > 1 ) theo giả thiết 

Vậy GTNN A là 9 <=> x = 4 

Khách vãng lai đã xóa
Mạnh=_=
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2022 lúc 17:50

\(A=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)

\(A_{min}=10\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

\(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(B_{min}=-36\) khi \(x^2+5x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4x+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(1;2\right)\)

Nguyễn Ngọc Huy Toàn
1 tháng 3 2022 lúc 17:56

a. \(A=4x^2+4x+11\)

   \(A=\left(4x^2+4x+1\right)+10\)

  \(A=\left(2x+1\right)^2+10\)

Ta có: \(\left(2x+1\right)^2\ge0;\forall x\) 

\(\Rightarrow A_{min}=10\)

Dấu "=" xảy ra khi \(\left(2x+1\right)^2=0\)

                            \(\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

c.\(C=x^2-2x+y^2-4y+7\)

  \(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

  \(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Ta có: \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0;\forall x,y\)

\(\Rightarrow C_{min}=2\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Thy Anh
Xem chi tiết
Monkey D. Luffy
3 tháng 9 2021 lúc 17:04

\(A=x-2\sqrt{3-x}\\ =-\left(3-x-2\sqrt{3-x}+1\right)+4\\ =-\left(\sqrt{3-x}-1\right)^2+4\le4\)

Dấu \("="\Leftrightarrow\sqrt{3-x}-1=0\Leftrightarrow3-x=1\Leftrightarrow x=2\)

Nguyễn Thị Quỳnh Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 13:32

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4