Tìm y :
100 + 180 : y x 0,46 - 105,52
Giúp e vs
Tìm x:
x:0,46.x=581
Giúp e với ☺️
bài 5: tìm x, y, z bt:
a, x/8 = y/12 vs x + y = 60
b, x/3 = y/6 vs x.y = 162
c, x/y = 2/5 vs x.y = 40
d, x/7 = y/6, y/8 = z/5 vs x + y - z = 37
e, 10x = 15y = 21z vs 3x - 5z + 7y = 37
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
Giá trị nhỏ nhất của A = -40
x = 2035
Giá trị nhỏ nhất của B = -207
x = 1
Giá trị nhỏ nhất của C = 4
x = -1
Giá trị nhỏ nhất của D = -2
x ∈ {-2;-1}
Giá trị nhỏ nhất của E = -2021
x = 2019
y = -2020
Tìm y:
a) y-70=100
b) 80+y=180
c) 70-y=30
Tìm y:
a) y-70=100
y =100+70
y =170
b) 80+y=180
y =180-80
y =100
c) 70-y=30
y=70-30
y=40
a. y=100+70= 170
b. y= 180-80=100
c. y= 70-30=40
a)y-70=100
=>y=100+70=170
b)80+y=180
=>y=180-80=100
c)70-y=30
=>y=70-30=40
a) 5x(x-y)+2(x-2y)2
b)(x-5y)2-(x+3y)2
c)x2-64
d)y2-100
e)y2-100
Mọi ng chỉ e vs!!!!
b)\(\left(x-5y\right)^2-\left(x+3y\right)^2=\left(x-5y-x-3y\right)\left(x-5y+x+3y\right)\\ =-8y\left(2x-2y\right)=-16\left(x-y\right)\)
c) \(x^2-64=x^2-8^2=\left(x-8\right)\left(x+8\right)\)
d)\(y^{2-100}=y^2:y^{100}=\dfrac{y^2.1}{y^{100}}=\dfrac{1}{y^{98}}\)
e)\(y^2-100=y^2-10^2=\left(y-10\right)\left(y+10\right)\)
tìm hai số x và y biết rằng x/7 =y/13 với x+y =40
giúp e vs ạ :<
\(\dfrac{x}{7}=\dfrac{y}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
⇒\(\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
=> \(\dfrac{x}{7}=\dfrac{y}{13}=2\)
=> \(\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
Do đó: x=14; y=26
Cho x và y là 2 đại lượng tỉ lệ thuận
Biết x=4,y=12
a) Tìm hệ số tỉ lệ của x vs y
b)Tìm hệ số tỉ lệ của y vs x
c)Hãy biểu diễn y theo x
d)Tìm y khi x=-2,x=0,75
e)Tìm x khi y = 40,y=căn25
\(\left\{{}\begin{matrix}\dfrac{9}{2}x+2y=180\\\dfrac{-180}{x}+\dfrac{180}{y}=\dfrac{-5}{2}\end{matrix}\right.\)
Mn giải giúp mình hệ này vs ạ, mình cảm ơn
=>9x+4y=360 và 36/x-36/y=1/2
=>4y=360-9x và 36/x-36/y=1/2
=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)
=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)
=>90x-2,25x^2=2(3240-117x)
=>-2,25x^2+90x-6840+234x=0
=>x=118,3 hoặc x=25,7
=>y=-176,175 hoặc y=32,175
Tìm tất cả các số x,y,z biết: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=x+y+z\)
Giair chi tiết hộ e vs ạ.
gợi ý nè:
thử cộng chúng lại xem
\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)
\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)
\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1
⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)
Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1
3\(x\) = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)
Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2
3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)
Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)
\(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)
Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))