\(2xy^2-10xy\)
phân tích đa thức hành hằng đẳng thức
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)
Phân tích các đa thức sau thành nhân tử:
a. 4x – 20y
b. 10x2 + 10xy – x – y
c. x2 – 2xy – z2 + y2
\(a,4x-20y=4\left(x-5y\right)\\ b,10x^2+10xy-x-y=10x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(10x-1\right)\\ c,x^2-2xy-z^2+y^2=\left(x^2-2xy+y^2\right)-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
16 - ( a-b)2
\(=\left(4-a+b\right)\left(4+a-b\right)\)
Phân tích đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức:
x2 - 2xy + y2 - 4m2 + 4mn - n2
Chiều nay mình đi học rồi nha, ai làm nhanh nhất mình k.
Bổ sung nha :
(x - y)2 - (2m - n)2
= (x - y -2m - n) . (x - y + 2m - n) .
Chúc bạn học tốt !
x2-2xy+y2-4m2+4mn-n2 mới đúng tui giải cho
<=> (x-y)2-(4m-n)2< Áp dụng hằng đẳng thức số 2 >
<=> (x-y-4m-2).(x-y+4m-2) < HĐT số 3 >
x2 - 2xy + y2 - 4m2 + 4mn - n2
= (x2 - 2xy + y2) - (4m2 + 4mn - n2)
= x2 - 2xy + y2 - 4m2 - 4mn + n2
= (x - y)2 - (2m - n)2.
Chúc bạn học tốt !
27x3 - a3b3
phân tích đa thức thành nhân tử bằng hằng đẳng thức
\(27x^3-a^3b^3\)
\(=\left(3x\right)^3-\left(ab\right)^3\)
\(=\left(3x-ab\right)\left[\left(3x\right)^2+3x\cdot ab+\left(ab\right)^2\right]\)
\(=\left(3x-ab\right)\left(9x^2+3xab+a^2b^2\right)\)
27x³ - a³b³
= (3x)³ - (ab)³
= (3x - ab)(9x² + 3xab + a²b²)
Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức:
9(x-3y)^2-25(2x+y)^2
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
Phân tích đa thức thành nhân tử bằng hằng đẳng thức
a) a2y2+b2x2- 2abxy
b) 100 - (3x-y)2
\(a,a^2y^2+b^2x^2-2abxy\\ =\left(ay\right)^2-2abxy+\left(bx\right)^2\\ =\left(ay-bx\right)^2=\left(bx-ay\right)^2\\ ---\\ b,100-\left(3x-y\right)^2\\ =10^2-\left(3x-y\right)^2\\ =\left(10-3x+y\right)\left(10+3x-y\right)\)
a) \(=\left(ay\right)^2-2abxy+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
b) \(100-\left(3x-y\right)^2\)
\(=10^2-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
Phân tích đa thức rồi tính giá trị của biểu thức:
a. 5x2+10xy+5-5y2 tại x=1,y=2
b. 7x-7y-x2+2xy-y2 tại x=2,y=2
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
Phân tích đa thức thành tích bằng phương pháp dùng hằng đẳng thức
48 - 4y2 - 4y
=4^2.3-4y^2-4y
=4.(12-y^2-y)
hol tot
nho k nhe ae
good luck