Chứng minh các đa thức sau luôn luôn dương với mọi x ,y
a) 4x2 - 12x + 11
b) x2 - 2x + y2 + 4y + 6
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến
R=-x2-y2+8x+4y-21
-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2
Ta có : -(x-4)2<= 0
suy ra: -(x-4)2-(y-2)2<=0 (dpcm)
cho biểu thức
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
chứng minh rằng biểu thức Q luôn nhận giá trị dương với mọi số thực x, y
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-12x+12y-10y+5y^2+2017\)
\(Q=\left(x-y\right)^2-2.6\left(x-y\right)+36+\left(5y^2-10y+5\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Vì\(\left(x-y-6\right)^2;5\left(y-1\right)^2\ge0\)
\(Q>0\forall x;y\in R\)(đpcm)
Cho biểu thức: A = (x + 1)(x – 2) – x(2x – 3) + 4 + 2x2
a) Chứng minh: A = x2 + 2x + 2
b) Tính giá trị của biểu thức A khi x =
c) Chứng minh biểu thức A luôn dương với mọi x.
a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)
\(=x^2-x-2-2x^2+3x+2x^2+4\)
\(=x^2+2x+2\)
\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến
P=(x2+x+1)(x2-1+1)(x4-x2+1)
Chứng minh rằng các biểu thức sau có giá trị luôn âm với mọi giá trị của biến a) A = 4 – x2 + 2x b) B = (x + 3)(4 – x) . giúp vớiiiiii :)
a. Đề sai, với \(x=0\Rightarrow A=4>0\)
b. Đề sai, với \(x=0\Rightarrow B=12>0\)
tìm gia trị nhỏ nhất của biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7
\(A=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)
\(A_{min}=10\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
\(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
\(B_{min}=-36\) khi \(x^2+5x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4x+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left(x;y\right)=\left(1;2\right)\)
a. \(A=4x^2+4x+11\)
\(A=\left(4x^2+4x+1\right)+10\)
\(A=\left(2x+1\right)^2+10\)
Ta có: \(\left(2x+1\right)^2\ge0;\forall x\)
\(\Rightarrow A_{min}=10\)
Dấu "=" xảy ra khi \(\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)
c.\(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Ta có: \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0;\forall x,y\)
\(\Rightarrow C_{min}=2\)
Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7
Chứng minh rằng các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)