Rút gọn biểu thức sau: \(C=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) với \(x\ge2.\)
Rút gọn biểu thức sau: \(P=\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}-\sqrt{x-\sqrt{2x-1}}}}\) (\(\left(x\ge2\right)\)
rút gọn biểu thức
\(\sqrt{x+2\sqrt{x-2}-1}\cdot\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
với \(x\ge2;x\ne3\)
\(\sqrt{x+2\sqrt{x-2}-1}.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{1}+1}.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\sqrt{x-2}-1.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\frac{\left(\sqrt{x-2}-1\right)^2}{\sqrt{x}-\sqrt{3}}\)
\(\sqrt{x+2\sqrt{x-2}-1}.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\sqrt{x+2+2.\sqrt{x-2}.\sqrt{1}-1}.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\sqrt{x-2}-1.\frac{\left(\sqrt{x-2}-1\right)}{\sqrt{x}-\sqrt{3}}\)
\(=\frac{\left(\sqrt{x-2}-1\right)^2}{\sqrt{x}-\sqrt{3}}\)
Good luck !!! Rất vui vì giúp đc bạn <3
Rút gọn biểu thức sau:
\(P=\frac{\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}}{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}\) với \(x\ge2\)
- Đề bài có SAI hoặc NHẦM gì đó nên mình sửa lại rồi chú ý gửi câu hỏi đúng lần sau bạn nhớ
Ta có : \(P=\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}\)
=> \(P=\frac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}}\)
=> \(P=\frac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}}\)
=> \(P=\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x-1}+1-\sqrt{x-1}+1}\)
=> \(P=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
Rút gọn biểu thức:
\(\sqrt{x+2\sqrt{x-1}}\) + \(\sqrt{x-2\sqrt{x-1}}\) với x ≥ 2
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}\right)^2+2\cdot\sqrt{x-1}\cdot1+1^2}+\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+\sqrt{x-1}-1\)
\(=2\sqrt{x-1}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
Mọi người ơi, giải giúp mình bài này với
Rút gọn biểu thức:
\(\left(\sqrt{x+2\sqrt{x-2}-1}\right)\left(\sqrt{x-1}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\left(x\ge2,\right)x\ne3\)
Mình đang cần gấp, nhanh lên chút nhé
Rút gọn Biểu thức sau:
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2.\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x lớn hơn 0 và x khác 1
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)
\(=\left(1-x\right).2\sqrt{x}\)
\(=2\sqrt{x}-2x\sqrt{x}\)
Cho biểu thức:
\(C=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{6\sqrt{x}-8}{x-3\sqrt{x}+2}\)
với x ≥ 0 , x ≠ 1 , x ≠ 4
a. Rút gọn C
b. Tính C khi x = 36
a) Ta có: \(C=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{6\sqrt{x}-8}{x-3\sqrt{x}+2}\)
\(=\dfrac{x-4\sqrt{x}+4-\left(x+\sqrt{x}-2\right)+6\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+2\sqrt{x}-4-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{1}{\sqrt{x}-1}\)
b) Thay x=36 vào C, ta được:
\(C=\dfrac{1}{6-1}=\dfrac{1}{5}\)
rút gọn biểu thức sau
D=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
giải chi tiết hộ mình với ạ!!!
\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Cho biểu thức A= \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\) với x>0 và x\(\ne\)1. Rút gọn biểu thức A
Sửa đề: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2}{x-1}\)