Tìm m để phương trình 6x-5m=3+3mx có nghiệm gấp 3 lần nghiệm của phương trình (x+1)(x-1)- (x+2)2=3
Cho 6x-5m=3+3mx (1) và (x+1)(x-1)-(x+2)2=3 (2). Nghệm của phương trình (1) gấp 2 lần nghiệm phương trình (2). Tìm m
Mong mng giúp ạ!
Xét pt (1): \(6x-5m=3+3mx\Leftrightarrow\left(3m-6\right)x=-5m-3\)
Để pt có nghiệm \(\Rightarrow m\ne2\) khi đó \(x=\dfrac{-5m-3}{3m-6}\)
Xét pt (2): \(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)
\(\Leftrightarrow x^2-1-x^2-4x-4=3\Rightarrow4x=-8\Rightarrow x=-2\)
Để nghiệm của (1) gấp 2 lần nghiệm của (2)
\(\Rightarrow\dfrac{-5m-3}{3m-6}=-2.2=-4\)
\(\Leftrightarrow-5m-3=-12m+24\Rightarrow m=\dfrac{27}{7}\)
(2) (x+1)(x-1) - (x+2)2 = 3
<=> x2 - 1 - x2 - 4x - 4 - 3 = 0
<=> -4x - 8 = 0
<=> -4(x - 2) = 0
<=> x - 2 = 0
<=> x = 2
Ta có x1 = 2 . x2
=> x1 = 2.2 = 4
(1) 6x - 5m = 3 + 3mx
<=> 24 - 5m = 3 + 12m
<=> 24 - 3 = 12m + 5m
<=> 21 = 17m
<=> m = \(\dfrac{17}{21}\)
Cho phương trình (ẩn x): (x – m)(x + 2) – 5mx + 4 = (x + m)(x – 2) – 6x (1).
Tìm các giá trị của m để phương trình (1) có nghiệm gấp đôi nghiệm của phương
trình 2x( x – 3 ) – 6x = 2(x – 1)(x + 5).
Tìm m để 2 phương trình : 3mx - 1 = 5m - x và m - x = 3mx + 1 có cùng 1 nghiệm
\(Pt\left(1\right)\): \(3mx-1=5m-x\) \(\Leftrightarrow\) \(3mx+x=5m+1\) \(\Leftrightarrow\) \(\left(3m+1\right)x=5m+1\) \(\Leftrightarrow\) \(x=\frac{5m+1}{3m+1}\)
\(Pt\left(2\right)\) : \(m-x=3mx+1\) \(\Leftrightarrow m-1=3mx+x\) \(\Leftrightarrow\) \(\left(3m+1\right)x=m-1\)\(\Leftrightarrow\) \(x=\frac{m-1}{3m+1}\)
Để \(pt\left(1\right)\) và \(pt\left(2\right)\) có cùng nghiệm thì \(\frac{5m+1}{3m-1}=\frac{m-1}{3m+1}\)\(\Leftrightarrow\)\(5m+1=m-1\)\(\Leftrightarrow\)\(4m=-2\Leftrightarrow m=-\frac{1}{2}\)
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
Bài 01: Biện luận số nghiệm của phương trình ẩn x sau
a/ (2m-3)x + 3mx - 5m + k - 4 = 0
b/ (m-2)x + 2mx - 3m + k - 3 = 0
c/ k2 (2kx + 1) - k(5k2 - 2x) = 5k -1
Bài 02: Tìm giá trị của k để phương trình sau là phương trình bậc nhất ẩn x
a/ (2x-3)x - k2x2 - x = 4x2 - 5
b/ (3k+7)x + k2x2 +4 = 9x2 - 2x
Bài 1 : tìm các giá trị của m để phương trình có nghiệm kép : A. 3x² - 2mx + 1 = 0 B. 4mx² - 6x - m-3 = 0 C. (m+2) x² - 2 (m-1) x + 4 = 0 D. (m-6) x² + 3mx - 2 = 0
a: Δ=(-2m)^2-4*3*1=4m^2-12
Để phương trình có nghiệm kép thì 4m^2-12=0
=>m^2=3
=>\(m=\pm\sqrt{3}\)
b:
TH1: m=0
=>-6x-3=0
=>x=-1/2(nhận)
TH2: m<>0
Δ=(-6)^2-4*4m*(-m-3)
=36-16m(-m-3)
=36+16m^2+48m
=16m^2+48m+36
Để phương trình có nghiệm kép thì 16m^2+48m+36=0
=>m=-3/2
c: TH1: m=-2
=>-2(-2-1)x+4=0
=>6x+4=0
=>x=-2/3(nhận)
TH2: m<>-2
Δ=(2m-2)^2-4(m+2)*4
=4m^2-16m+4-16m-32
=4m^2-32m-28
Để pt có nghiệm kép thì 4m^2-32m-28=0
=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)
d: TH1: m=6
=>18x-2=0
=>x=1/9(nhận)
TH2: m<>6
Δ=(3m)^2-4*(-2)(m-6)
=9m^2+8m-48
Để pt có nghiệm kép thì 9m^2+8m-48=0
=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)
Bài 2: cho phương trình\(x^2-2\left(m+1\right)x+2m+10=0\)
a)Tìm m để phương trình có nghiệm này gấp 3 lần nghiệm kia
b)Tìm m để phương trình có 2 nghiệm thỏa mãn \(P=-x_1^2-x_2^2-10x_1x_2\) có giá trị lớn nhất
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{2}\\x_1=\dfrac{3\left(m+1\right)}{2}\end{matrix}\right.\)
Lại có \(x_1x_2=2m+10\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3\left(m+1\right)}{2}\right)=2m+10\)
\(\Leftrightarrow3m^2+6m+3=8m+40\)
\(\Leftrightarrow3m^2-2m-37=0\Rightarrow m=\dfrac{1\pm4\sqrt{7}}{3}\)
b.
\(P=-\left(x_1+x_2\right)^2-8x_1x_2\)
\(=-4\left(m+1\right)^2-8\left(2m+10\right)\)
\(=-4m^2-24m-84=-4\left(m+3\right)^2-48\le-48\)
\(P_{max}=-48\) khi \(m=-3\)
a) Ta có: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+10\right)\)
\(=\left(2m+2\right)^2-4\left(2m+10\right)\)
\(=4m^2+8m+4-8m-40\)
\(=4m^2-36\)
Để phương trình có nghiệm thì \(4m^2-36\ge0\)
\(\Leftrightarrow4m^2\ge36\)
\(\Leftrightarrow m^2\ge9\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi \(m\ge3\) hoặc \(m\le-3\) thì Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1\cdot x_2=2m+10\\x_1+x_2=2\left(m+1\right)=2m+2\end{matrix}\right.\)
mà \(x_1-3x_2=0\) nên ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2m+2\\x_1=3x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\cdot x_2\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{3m+3}{2}\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\)
Thay \(x_1=\dfrac{3m+3}{2};x_2=\dfrac{m+1}{2}\) vào \(x_1\cdot x_2=2m+10\), ta được:
\(\dfrac{3m+3}{2}\cdot\dfrac{m+1}{2}=2m+10\)
\(\Leftrightarrow\dfrac{3\left(m+1\right)^2}{4}=2m+10\)
\(\Leftrightarrow3\left(m^2+2m+1\right)=8m+40\)
\(\Leftrightarrow3m^2+6m+3-8m-40=0\)
\(\Leftrightarrow3m^2-2m-37=0\)
\(\Delta=\left(-2\right)^2-4\cdot3\cdot\left(-37\right)=4+444=448>0\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2+8\sqrt{7}}{6}=\dfrac{4\sqrt{7}+1}{3}\left(nhận\right)\\m_2=\dfrac{2-8\sqrt{7}}{6}=\dfrac{1-4\sqrt{7}}{3}\left(nhận\right)\end{matrix}\right.\)
a) Tìm m để phương trình\(\left(m+3\right)x^2-\left(m^2+5m\right)x+2m^2=0\) có nghiệm x=-2
tìm nghiệm còn lại
b Tìm m để phương trình \(\left(m^2-1\right)x^2-2mx+m^2+m+4=0\) có nghiệm x=2
Tìm nghiệm còn
lại?
b) Thay x=2 vào pt, ta được:
\(4\left(m^2-1\right)-4m+m^2+m+4=0\)
\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)
\(\Leftrightarrow5m^2-3m=0\)
\(\Leftrightarrow m\left(5m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=\dfrac{2m}{m^2-1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)
Cho phương trình: x2-2(2m+1)x+3+4m=0.Tìm m để phương trình có nghiệm x1,x2
a,Tìm hệ thức độc lập với m giữa các nghiệm x1,x2
b, Tìm m để phương trình có một nghiệm gấp 3 lần nghiệm kia
c, Viết phương trình bậc hai có 2 nghiệm là (x1)^2, (x2)^2