Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lelemalin
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 9 2021 lúc 22:56

\(-2x^2-2xy-y^2+2x-2y-2=-\left[y^2+2y\left(x+1\right)+\left(x+1\right)^2\right]-\left(x^2-4x+4\right)+3=-\left(y+x+1\right)^2-\left(x-2\right)^2+3\le3\)

\(max=3\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

Ngoc Huy
Xem chi tiết
Phạm Kim Ngân
19 tháng 12 2020 lúc 20:24

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

Phạm Kim Ngân
19 tháng 12 2020 lúc 20:26

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

nguyễn thị maianh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:44

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

cù thị lan anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 23:12

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

cù thị lan anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 22:03

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

Phạm Nam Khôi
Xem chi tiết

a: \(P=x^2+y^2-6x-2y+17\)

\(=x^2-6x+9+y^2-2y+1+7\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+7\ge7\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-1=0

=>x=3 và y=1

b: \(Q=x^2+xy+y^2-3x-3y+999\)

\(=x^2+x\left(y-3\right)+y^2-3y+999\)

\(=x^2+2\cdot x\cdot\left(\frac12y-\frac32\right)+\left(\frac12y-\frac32\right)^2+y^2-3y-\left(\frac12y-\frac32\right)^2+999\)

\(=\left(x+\frac12y-\frac32\right)^2+y^2-3y-\left(\frac14y^2-\frac32y+\frac94\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34y^2-\frac32y-\frac94+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y-3\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y+1-4\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y-1\right)^2+996\ge996\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x+\frac12y-\frac32=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=-\frac12y+\frac32=-\frac12+\frac32=\frac22=1\end{cases}\)

c: \(R=2x^2+2xy_{}+y^2-2x+2y+15\)

\(=x^2-4x+4+x^2+2xy+y^2+2x+2y+11\)

\(=\left(x-2\right)^2+x^2+2xy+y^2+2x+2y+1+10\)

\(=\left(x-2\right)^2+\left(x+y+1\right)^2+10\ge10\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-2=0\\ x+y+1=0\end{cases}\Rightarrow\begin{cases}x=2\\ y=-x-1=-2-1=-3\end{cases}\)

d: \(S=x^2+26y^2-10xy+14x-76y+59\)

\(=x^2-10xy+25y^2+14x-70y+y^2-6y+59\)

\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+y^2-6y+9+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-3=0\\ x-5y+7=0\end{cases}\Rightarrow\begin{cases}y=3\\ x=5y-7=5\cdot3-7=15-7=8\end{cases}\)

e: \(T=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+4y^2+10x-20y+y^2-2y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x-2y+5=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=2y-5=2\cdot1-5=2-5=-3\end{cases}\)


弃佛入魔
30 tháng 8 2021 lúc 16:07

\(=2(x-y)-(x-y)^2\)

\(=(x-y)^3\)

ILoveMath
30 tháng 8 2021 lúc 16:07

\(2x-2y-x^2+2xy-y^2=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 23:43

\(2x-2y-x^2+2xy-y^2\)

\(=2\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(2-x+y\right)\)

người học sinh giỏi:))
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 9:14

a) \(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)

b) \(=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)

c) \(=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)

d) \(=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)

e) \(=x\left(x^2-11x+30\right)\)

f) \(=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)

Phạm An Khánh
Xem chi tiết
huu nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 8:55

b: \(=\dfrac{-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-x}{x+y}\)

Nguyễn Hoàng Minh
25 tháng 12 2021 lúc 9:22

\(a,=\dfrac{2\left(x-y\right)}{x\left(x-2y\right)}\\ b,=\dfrac{x\left(x-y\right)}{-\left(x-y\right)\left(x+y\right)}=-\dfrac{x}{x+y}\)