Tìm Min
2x2+2xy+y2-2x+2y+2
Tìm GTLN của -2x2 - 2xy - y2 + 2x - 2y - 2
\(-2x^2-2xy-y^2+2x-2y-2=-\left[y^2+2y\left(x+1\right)+\left(x+1\right)^2\right]-\left(x^2-4x+4\right)+3=-\left(y+x+1\right)^2-\left(x-2\right)^2+3\le3\)
\(max=3\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
(x+1)/x2+2x-3 và (-2x)/x2+7x+10
x-y/x2+xy vÀ 2x-3y/xy2
x-2y/2 và x2+y2/2x-2xy
x+2y/x2y+xy2 và x-yy/x2+2xy+y2
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
Tìm giá trị nhỏ nhất:
a/ P=x2+y2-6x-2y+17
b/ Q=x2+xy+y2-3x-3y+999
c/ R=2x2+2xy+y2-2x+2y+15
d/ S=x2+26y2-10xy+14x-76y+59
e/ T=x2-4xy+5y2+10x-22y+28
Giúp mình với nha!
a: \(P=x^2+y^2-6x-2y+17\)
\(=x^2-6x+9+y^2-2y+1+7\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+7\ge7\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-1=0
=>x=3 và y=1
b: \(Q=x^2+xy+y^2-3x-3y+999\)
\(=x^2+x\left(y-3\right)+y^2-3y+999\)
\(=x^2+2\cdot x\cdot\left(\frac12y-\frac32\right)+\left(\frac12y-\frac32\right)^2+y^2-3y-\left(\frac12y-\frac32\right)^2+999\)
\(=\left(x+\frac12y-\frac32\right)^2+y^2-3y-\left(\frac14y^2-\frac32y+\frac94\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34y^2-\frac32y-\frac94+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y-3\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y+1-4\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y-1\right)^2+996\ge996\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x+\frac12y-\frac32=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=-\frac12y+\frac32=-\frac12+\frac32=\frac22=1\end{cases}\)
c: \(R=2x^2+2xy_{}+y^2-2x+2y+15\)
\(=x^2-4x+4+x^2+2xy+y^2+2x+2y+11\)
\(=\left(x-2\right)^2+x^2+2xy+y^2+2x+2y+1+10\)
\(=\left(x-2\right)^2+\left(x+y+1\right)^2+10\ge10\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-2=0\\ x+y+1=0\end{cases}\Rightarrow\begin{cases}x=2\\ y=-x-1=-2-1=-3\end{cases}\)
d: \(S=x^2+26y^2-10xy+14x-76y+59\)
\(=x^2-10xy+25y^2+14x-70y+y^2-6y+59\)
\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+y^2-6y+9+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-3=0\\ x-5y+7=0\end{cases}\Rightarrow\begin{cases}y=3\\ x=5y-7=5\cdot3-7=15-7=8\end{cases}\)
e: \(T=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+4y^2+10x-20y+y^2-2y+28\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x-2y+5=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=2y-5=2\cdot1-5=2-5=-3\end{cases}\)
2x - 2y - x2 + 2xy - y2
\(2x-2y-x^2+2xy-y^2=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)
\(2x-2y-x^2+2xy-y^2\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3x2 + 5x - 3xy- 5y d) x2 - 25 + y2 + 2xy
e) x3 - 11 x2 + 30x f) x2 + 3x - 18
phân tích các đa thức thành nhân tử
a) \(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
b) \(=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)
c) \(=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)
d) \(=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
e) \(=x\left(x^2-11x+30\right)\)
f) \(=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)
giải hệ phương trình
x2+y2+2x+2y=7
y2-2xy-2x=10
Rút gọn phân số sau: a, 2x-2y/x 2-2xy
b, x 2-xy/ y2 -x2
b: \(=\dfrac{-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-x}{x+y}\)
\(a,=\dfrac{2\left(x-y\right)}{x\left(x-2y\right)}\\ b,=\dfrac{x\left(x-y\right)}{-\left(x-y\right)\left(x+y\right)}=-\dfrac{x}{x+y}\)