14 \(\dfrac{2}{3}\)- y = 2\(\dfrac{2}{3}\) X 3\(\dfrac{1}{6}\)
Biết \(x,y,z\) là các số thực dương. Tìm GTNN \(M=\dfrac{x^{14}-x^6+3}{x^2y^2+zx+zy}+\dfrac{y^{14}-y^6+3}{y^2z^2+xy+xz}+\dfrac{z^{14}-z^6+3}{z^2x^2+yz+yx}\)
tìm số tự nhin x bt
a.\(x-\)\(\dfrac{5}{14}=\dfrac{3}{7}-\dfrac{1}{14}\) b.\(\dfrac{2}{9}:x=\dfrac{1}{2}+\dfrac{2}{3}\) c.\(\dfrac{6}{32:x}=\dfrac{12}{16}\)
a: =>x-5/14=6/14-1/14=5/14
=>x=10/14=5/7
b; =>2/9:x=3/6+4/6=7/6
=>x=2/9:7/6=2/9*6/7=4/21
c: =>32:x=8
=>x=4
a
\(x-\dfrac{5}{14}=\dfrac{3}{7}-\dfrac{1}{14}\\ x-\dfrac{5}{14}-\dfrac{3}{7}+\dfrac{1}{14}=0\\ x+\dfrac{1}{14}-\dfrac{5}{14}-\dfrac{6}{14}=0\\ x+\dfrac{1-5-6}{14}=0\\ x-\dfrac{5}{7}=0\\ x=0+\dfrac{5}{7}\\ x=\dfrac{5}{7}\)
b
\(\dfrac{2}{9}:x=\dfrac{1}{2}+\dfrac{2}{3}\\ \dfrac{2}{9}:x=\dfrac{3}{6}+\dfrac{4}{6}\\ \dfrac{2}{9}:x=\dfrac{3+4}{6}=\dfrac{7}{6}\\ x=\dfrac{2}{9}:\dfrac{7}{6}\\ x=\dfrac{2}{9}\times\dfrac{6}{7}=\dfrac{2.3.2}{3.3.7}=\dfrac{4}{21}\)
c
\(\dfrac{6}{32:x}=\dfrac{12}{16}\\ 32:x=6:\dfrac{12}{16}\\ 32:x=6\times\dfrac{16}{12}\\ 32:x=\dfrac{3\times2\times4\times4}{3\times4}\\ 32:x=8\\ x=\dfrac{32}{8}\\ x=4\)
`@` `\text {Answer}`
`\downarrow`
`a,`
`x - 5/14 = 3/7 - 1/14`
`x - 5/14 = 5/14`
`=> x = 5/14 + 5/14`
`=> x = 5/7`
Vậy, `x = 5/7`
`b,`
`2/9 \div x = 1/2 + 2/3`
`2/9 \div x = 7/6`
`x = 2/9 \div 7/6`
`x = 4/21`
Vậy, `x = 4/21`
`c,`
\(\dfrac{6}{32\div x}=\dfrac{12}{16}\)
`6/(32 \div x) = 3/4`
`32 \div x = 6 \div 3/4`
`32 \div x = 8`
` x = 32 \div 8`
`x = 4`
Vậy, `x = 4`
Rút gọn biểu thức 1) \(\dfrac{\sqrt{14}-\sqrt{21}}{\sqrt{7}}\) .
2) \(\dfrac{\sqrt{a^2+5a+6}}{\sqrt{a+3}}\)
3) \(\sqrt{3\left(x^2-10x+25\right)}.\sqrt{27}\) với x < 5
4)
\(\dfrac{y}{x}\sqrt{\dfrac{x^2}{y^4}}\) với x > 0; y < 0
5) \(\dfrac{1}{x-y}.\sqrt{x^6\left(x-y\right)^4}\) với x \(\ne\) y
5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)
Thực hiện phép tính
a) \(^{\dfrac{x^2+2}{x^3-1}}\) +\(\dfrac{2}{x^2+x+1}\) +\(\dfrac{1}{1-x}\)
b) \(\dfrac{1}{x+2}\) +\(\dfrac{3}{x^2-4}\) +\(\dfrac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)
c)\(\dfrac{1}{x-y}\) -\(\dfrac{3xy}{x^3-y^3}\) +\(\dfrac{x-y}{x^2+xy+y^2}\)
d) \(\dfrac{1}{a-b}\) +\(\dfrac{1}{a+b}\) +\(\dfrac{2a}{a^2+b^2}\) +\(\dfrac{4a^3}{a^4+b^4}\)
e) \(\dfrac{1}{a^2-a}\) + \(\dfrac{1}{a^2-3a+2}\) +\(\dfrac{1}{a^2-5a+6}\) +\(\dfrac{1}{a^2-7a+12}\)
a) \(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
b) \(=\dfrac{1}{x+2}+\dfrac{3}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\)
c) \(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{x^2-2xy+y^2+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
\(\dfrac{3}{5}+\dfrac{1}{2}+\dfrac{8}{15}\)
\(\dfrac{6}{9}+\dfrac{14}{18}-\dfrac{5}{6}\)
\(\dfrac{9}{20}-\dfrac{3}{5}:\dfrac{4}{1}\)
\(\dfrac{1}{6}+\dfrac{2}{3}\) x \(\dfrac{8}{9}\)
\(\dfrac{3}{5}+\dfrac{1}{2}+\dfrac{8}{15}\\ =\dfrac{3\times6}{5\times6}+\dfrac{1\times15}{2\times15}+\dfrac{8\times2}{15\times2}\\ =\dfrac{18}{30}+\dfrac{15}{30}+\dfrac{16}{30}\\ =\dfrac{49}{30}\\ \dfrac{6}{9}+\dfrac{14}{18}-\dfrac{5}{6}\\ =\dfrac{6\times2}{9\times2}+\dfrac{14}{18}-\dfrac{5\times3}{6\times3}\\ =\dfrac{12}{18}+\dfrac{14}{18}-\dfrac{15}{18}\\ =\dfrac{11}{18}\)
\(\dfrac{9}{20}-\dfrac{3}{5}:\dfrac{4}{1}\\ =\dfrac{9}{20}-\dfrac{3}{5}\times\dfrac{1}{4}\\ =\dfrac{9}{20}-\dfrac{3}{20}\\ =\dfrac{6}{20}\\ =\dfrac{3}{10}\)
\(\dfrac{1}{6}+\dfrac{2}{3}\times\dfrac{8}{9}\\=\dfrac{1}{6}+\dfrac{16}{27}\\ =\dfrac{1\times9}{6\times9}+\dfrac{16\times2}{27\times2}\\ =\dfrac{9}{54}+\dfrac{32}{54}\\ =\dfrac{41}{54}.\)
Tìm x,y,z trong dãy tỉ số bằng nhau
1)\(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\)và \(2x^2+2y^2.z^2=1\)
2) \(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)
3) \(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\)và x6 . y6 =14
4) \(\dfrac{x+4}{6}=\dfrac{3y-1}{8}=\dfrac{3y-x-5}{x}\)
5) \(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\)và x.y.z=192
6)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{x.y}{200}\)
7)\(\dfrac{x+1}{2}=\dfrac{y-1}{3}=\dfrac{z+2}{4}=\dfrac{x+y+z+2}{2x+5}\)
8) \(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)và x.y = 1200
9)\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và x.y.z = 22400
10)15x = -10y =6z và x.y.z = -30000
11) Cho\(\dfrac{x+1}{3}=\dfrac{y-2}{5}=\dfrac{2z+14}{9}\)và x+z=y
12) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{6}\).Tính M=\(\dfrac{2x+3y+4z}{3x+4y+5z}\)
1. tìm các số chưa biết :
a) \(\dfrac{4}{3}\)= \(\dfrac{8}{x}\)=\(\dfrac{-y}{21}\)=\(\dfrac{-40}{z}\)=\(\dfrac{16}{t}\)=\(\dfrac{y}{111}\)
b) \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{14}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{4}{-78}\)
2. tìm x biết :
a) \(\dfrac{2}{x}=\dfrac{x}{8}\)
b) \(\dfrac{2x-9}{240}=\dfrac{39}{80}\)
c) \(\dfrac{x-1}{9}=\dfrac{8}{3}\)
mn giúp mk nha :>
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
1. \(\left(y+\dfrac{1}{3}\right)\)+\(\left(y+\dfrac{1}{9}\right)\)+\(\left(y+\dfrac{1}{27}\right)\)+\(\left(y+\dfrac{1}{81}\right)\)=\(\dfrac{56}{81}\)
2. 18:\(\dfrac{Xx0,4+0,32}{X}\)+5=14
3. \(\dfrac{3xX}{2}\)=\(\dfrac{2}{5}+\)X\(+\dfrac{1}{3}\)
4. X-\(\dfrac{11}{15}\)=\(\dfrac{3+X}{5}\)
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
Bài 3:
$\frac{3\times x}{2}=\frac{2}{5}+x+\frac{1}{3}$
$1,5\times x=x+\frac{11}{15}$
$1,5\times x-x=\frac{11}{15}$
$x\times (1,5-1)=\frac{11}{15}$
$x\times 0,5=\frac{11}{15}$
$x=\frac{11}{15}: 0,5=\frac{22}{15}$
Bài 1
a) 3\(\dfrac{1}{2}\) + 4\(\dfrac{5}{7}\) - 5\(\dfrac{5}{14}\)
b) 3\(\dfrac{5}{6}\) + 2\(\dfrac{1}{6}\) x 6
a) \(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}=\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}=\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}=\dfrac{40}{14}=\dfrac{20}{7}\)
b) \(3\dfrac{5}{6}+2\dfrac{1}{6}x6=\dfrac{23}{6}+\dfrac{13}{6}x6=\dfrac{23}{6}+\dfrac{78}{6}=\dfrac{101}{6}\)
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\left(1\right)=\dfrac{y}{x\left(2x-y\right)}-\dfrac{4x}{y\left(2x-y\right)}=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{-\left(y-2x\right)\left(y+2x\right)}{xy\left(y-2x\right)}=\dfrac{-y-2x}{xy}\\ \left(2\right)=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\\ \left(3\right)=\dfrac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\\ \left(4\right)=\dfrac{4x^2+15x+4+4x+7+1}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}=\dfrac{4x^2+19x+12}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}\)