đúng không
\(\dfrac{\sqrt{25}}{\sqrt{4}}=\sqrt{\dfrac{25}{4}}\)
a) \(\dfrac{2}{5}\sqrt{25}\) -\(\dfrac{1}{2}\sqrt{4}\) b)0,5\(\sqrt{0,09}\) +5\(\sqrt{0,81}\) c)\(\dfrac{2}{5}\sqrt{\dfrac{25}{36}}\) -\(\dfrac{5}{2}\sqrt{\dfrac{4}{25}}\)
d)-2\(\sqrt{\dfrac{-36}{-16}}\) + 5\(\sqrt{\dfrac{-81}{-25}}\)
`#3107.101107`
a)
`2/5 \sqrt{25} - 1/2 \sqrt{4}`
`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`
`= 2/5*5 - 1/2*2`
`= 2 - 1`
`= 1`
b)
`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`
`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`
`= 0,5*0,3 + 5*0,9`
`= 0,15 + 4,5`
`= 4,65`
c)
`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`
`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`
`= 2/5*5/6 - 5/2*2/5`
`= 1/3 - 1`
`= -2/3`
d)
`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`
`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`
`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`
`= -2*6/4 + 5*9/5`
`= -3 + 9`
`= 6`
\(S=\dfrac{\sqrt{2}-\sqrt{1}}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{25}-\sqrt{29}}{29+25}< \dfrac{2}{5}\)
Xét :\(\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Do đó :
\(S< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{5}\right)=\dfrac{2}{5}\)
tính
A) \(\sqrt{121}-\sqrt{\dfrac{1}{4}}+\sqrt{\dfrac{25}{36}}\)
b) \(\dfrac{3}{4}.\dfrac{-5}{7}-\dfrac{3}{4}.\dfrac{2}{7}\)
a,\(\sqrt{1}+\sqrt{9}+\sqrt{25}+\sqrt{49}+\sqrt{81}\) c\(\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}\)
b,\(\sqrt{\dfrac{1}{4}}+\sqrt{\dfrac{1}{9}}+\sqrt{\dfrac{1}{36}}+\sqrt{\dfrac{1}{16}}\) e\(\sqrt{2^2}+\sqrt{4^2}+\sqrt{\left(-6^2\right)}+\sqrt{\left(-8^2\right)}\)
j,\(\sqrt{1,44}-\sqrt{1,69}+\sqrt{1,96}\)
g, \(\sqrt{\dfrac{4}{25}}+\sqrt{\dfrac{25}{4}}+\sqrt{\dfrac{81}{100}}+\sqrt{\dfrac{9}{16}}\)
d\(\sqrt{81}-\sqrt{64}+\sqrt{49}\)
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
a/ 5 .\(\sqrt{0,01}\) - \(\sqrt{0,25}\)
b/ 15\(\dfrac{1}{4}\) : (-\(\dfrac{5}{7}\)) - 25\(\dfrac{1}{4}\) : (-\(\dfrac{5}{7}\))
c/ \(\dfrac{5^4\cdot20^4}{25^4\cdot4^5}\)
a, =2.0,1-0,5 b,=\(\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right):\left(-\dfrac{5}{7}\right)\)
=0,2-0,5 = -10:(\(\dfrac{-5}{7}\))
=-0,3 = 14
c, \(=\dfrac{5^4.\left(4.5\right)^4}{\left(5^2\right)^4.4^5}=\dfrac{5^4.4^4.5^4}{5^8.4^5}=\dfrac{1}{4^{ }}\)
Tính
\(\dfrac{2\sqrt{5}}{\sqrt{25}}.\dfrac{\sqrt{4}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{5}}{\sqrt{5}.\sqrt{5}}.\dfrac{2}{\sqrt{6}}=\dfrac{4}{\sqrt{30}}=\dfrac{2\sqrt{30}}{15}\)
\(\dfrac{2\sqrt{5}}{\sqrt{25}}.\dfrac{\sqrt{4}}{\sqrt{6}}=\dfrac{2\sqrt{5}}{5}.\dfrac{2}{\sqrt{6}}=\dfrac{4\sqrt{5}}{5\sqrt{6}}\)
a : \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
b : \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)với x ≥ 0 x ≠ 10
c : \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với x ≥ 0 x ≠ 9
d : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
a: ĐKXĐ: x>0
\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b: ĐKXĐ: x>=0; x<>16
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{x+16}\)
\(=\dfrac{x+16}{x+16}\cdot\dfrac{\sqrt{x}+2}{x-16}=\dfrac{\sqrt{x}+2}{x-16}\)
c: ĐKXĐ: x>=0; x<>25
\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
d: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
tính giá trị biểu thức
a)\(\sqrt{2-\sqrt{3}}\)\(\left(\sqrt{6}+\sqrt{2}\right)\)
b)\(\dfrac{x-25}{\sqrt{x}-5}\)-\(\dfrac{4+4\sqrt{x}+x}{\sqrt{x}+2}\)với x\(\ge\)0 ; x\(\ne\)25
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)
a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=3-1
=2
b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\sqrt{x}+5-\sqrt{x}-2\)
=3
Thu gọn các phân thức sau với x≥0
c)\(\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}\)
d) \(\dfrac{x-9}{x+6\sqrt{x}+9}\)
e) \(\dfrac{x-10\sqrt{x}+25}{25-x}\)
c) \(\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}\left(đk:x>0\right)=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
d) \(\dfrac{x-9}{x+6\sqrt{x}+9}\left(đk:x\ge0\right)=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)^2}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
e) \(\dfrac{x-10\sqrt{x}+25}{25-x}\left(đk:x\ge0,x\ne25\right)=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
c: \(\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
d: \(\dfrac{x-9}{x+6\sqrt{x}+9}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
e: \(\dfrac{x-10\sqrt{x}+25}{25-x}=\dfrac{5-\sqrt{x}}{\sqrt{x}+5}\)