Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sonyeondan Bangtan
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 21:14

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

Nguyễn Việt Lâm
20 tháng 9 2021 lúc 21:11

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

Hồng Phúc
20 tháng 9 2021 lúc 21:15

2.

Phương trình \(sin\left(3x-27^o\right)=2m^2+m\) có nghiệm khi:

\(2m^2+m\in\left[-1;1\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m\le1\\2m^2+m\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left(m+1\right)\left(2m-1\right)\le0\)

\(\Leftrightarrow-1\le m\le\dfrac{1}{2}\)

Pham Tien Dat
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 22:06

\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)

\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)

\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)

Do đó:

\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)

\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)

Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)

Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho

Bình Trần Thị
Xem chi tiết
Bùi Mạnh Dũng
31 tháng 12 2016 lúc 16:49

uốn giải bài này nhanh bạn cần biết đến công thức

PT:a.sinx +b.cosx =c có nghiệm khi:a2+b2≥c2a2+b2≥c2

ADCT:(m−1)2+m2≥3−2m(m−1)2+m2≥3−2m

⇔m2≥1⇔m2≥1

[m≥1m≤−1

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:24

b.

\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)

\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)

\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)

Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)

Phương trình có nghiệm khi và chỉ khi:

\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)

Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:28

Lý thuyết đồ thị:

Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)

Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)

a.

\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)

\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:

\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)

Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:28

c.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\left(m-1\right)sin2x-\left(m+1\right)\left(\dfrac{1}{2}+\dfrac{1}{2}cos2x\right)=m\)

\(\Leftrightarrow\left(2m-2\right)sin2x-\left(m+2\right)cos2x=3m\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi:

\(\left(2m-2\right)^2+\left(m+2\right)^2\ge9m^2\)

\(\Leftrightarrow m^2+m-2\le0\)

\(\Leftrightarrow-2\le m\le\)

Dương Nguyễn
Xem chi tiết
Linh Lê
9 tháng 7 2021 lúc 21:07

a) \(\sqrt{3}\left(\dfrac{1+cos2x}{2}\right)+\dfrac{1}{2}sin2x=m\) ↔ \(\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=m-\dfrac{\sqrt{3}}{2}\) 

\(\sqrt{3}cos2x+sin2x=2m-\sqrt{3}\) ↔ \(2cos\left(\dfrac{\pi}{6}-2x\right)=2m-\sqrt{3}\)

\(cos\left(\dfrac{\pi}{6}-2x\right)=m-\dfrac{\sqrt{3}}{2}\) 

Pt có nghiệm khi và chỉ khi \(-1\le m-\dfrac{\sqrt{3}}{2}\le1\) 

b)  \(\left(3+m\right)sin^2x-2sinx.cosx+mcos^2x=0\)

 cosx=0→ sinx=0=> vô lý 

→ sinx#0 chia cả 2 vế của pt cho cos2x ta đc:

\(\left(3+m\right)tan^2x-2tanx+m=0\)

pt có nghiệm ⇔ △' ≥0

Tự giải phần sau 

c) \(\left(1-m\right)sin^2x+2\left(m-1\right)sinx.cosx-\left(2m+1\right)cos^2x=0\) 

⇔cosx=0→sinx=0→ vô lý

⇒ cosx#0 chia cả 2 vế pt cho cos2x

\(\left(1-m\right)tan^2x+2\left(m-1\right)tanx-\left(2m+1\right)=0\)

pt có nghiệm khi và chỉ khi △' ≥ 0

Tự giải

 

Tam Bui
Xem chi tiết
nguyễn thị hương giang
16 tháng 10 2021 lúc 22:14

C) Pt \(\Rightarrow m\cdot\dfrac{1-cos2x}{2}-\left(m-1\right)sin2x+\left(2m+1\right)\cdot\dfrac{1+cos2x}{2}=0\)

\(\Rightarrow\left(m+1\right)cos2x-\left(2m-2\right)sin2x=-1-3m\)

Pt có nghiệm:  \(\Leftrightarrow\) \(\left(m+1\right)^2+\left[-\left(2m-2\right)\right]^2\ge\left(1+3m\right)^2\)

                        \(\Rightarrow\dfrac{-3-\sqrt{13}}{2}\le m\le\dfrac{-3+\sqrt{13}}{2}\)

Pt vô nghiệm: \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{-3+\sqrt{13}}{2}\\m< \dfrac{-3-\sqrt{13}}{2}\end{matrix}\right.\)

                        

Rell
Xem chi tiết
Linhhh
19 tháng 9 2021 lúc 19:16

b)

(sin2x + cos2x)cosx + 2cos2x - sinx = 0

⇔ cos2x (cosx + 2) + sinx (2cos2 x – 1) = 0

⇔ cos2x (cosx + 2) + sinx.cos2x = 0

⇔ cos2x (cosx + sinx + 2) = 0

⇔ cos2x  = 0

⇔ 2x =  + kπ ⇔ x =  + k  (k ∈ )

Linhhh
19 tháng 9 2021 lúc 19:18

c) 

Đáp án:

x=π6π6+ k2ππ

và x= 5π65π6+k2ππ (k∈Z)

Lời giải:

sin2x-cos2x+3sinx-cosx-1=0

⇔ 2sinxcosx-(1-2sin²x) +3sinx-cosx-1=0

⇔ 2sin²x+2sinxcosx+3sinx-cosx-2=0

⇔ (2sin²x+3sinx-2)+ cosx(2sinx-1)=0

⇔ (2sinx-1)(sinx+2)+cosx(2sinx-1)=0

⇔ (2sinx-1)(sinx+cosx+2)=0

⇔ sinx=1212

⇔ x=π6π6+ k2ππ

hoặc x= 5π65π6+k2ππ (k∈Z)

(sinx+cosx+2)=0 (vô nghiệm do sinx+cosx+2=√22sin(x+π4π4)+2>0)

Linhhh
19 tháng 9 2021 lúc 19:20

Nhầm, câu c

undefined

Nguyễn Tuấn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 13:22

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

Thảo Vi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 0:46

\(\Leftrightarrow cos\left(\pi x^2+2\pi x-\dfrac{\pi}{2}\right)=sin\left(\pi x^2\right)\)

\(\Leftrightarrow sin\left(\pi x^2+2\pi x\right)=sin\left(\pi x^2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi x^2+2\pi x=\pi x^2+k2\pi\\\pi x^2+2\pi x=\pi-\pi x^2+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\left(1\right)\\2x^2+2x-2k-1=0\left(2\right)\end{matrix}\right.\)

(1)  có nghiệm dương nhỏ nhất \(x=1\)

Xét (2), để (2) có nghiệm \(\Rightarrow\Delta'=1+2\left(2k+1\right)\ge0\) \(\Rightarrow k\ge0\)

Khi đó (2) có 2 nghiệm: \(\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{4k+3}}{2}< 0\\x=\dfrac{-1+\sqrt{4k+3}}{2}\ge\dfrac{\sqrt{3}-1}{2}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm dương nhỏ nhất của pt đã cho là \(x=\dfrac{\sqrt{3}-1}{2}\)

Vũ quang tùng
Xem chi tiết
Trí Tiên
1 tháng 3 2020 lúc 21:56

1) Phương trình ban đầu tương đương :

\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)

Đặt \(a=2x-2,b=2019x-2018\)

\(\Rightarrow a+b=2021x-2020\)

Khi đó phương trình có dạng :

\(\left(a+b\right)^3=a^3+b^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)

\(\Leftrightarrow\)Hoặc \(2x-2=0\) 

          Hoặc \(2019x-2018=0\)

          Hoặc \(2021x-2020=0\)

\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)

Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
1 tháng 3 2020 lúc 22:58

\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)

\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)

\(\Leftrightarrow-3x-xm=x-m\)

\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)

\(\Leftrightarrow x=\frac{m}{m+4}\)

Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)

\(\Rightarrow\frac{m}{m+4}\ge0\)

Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)

Khách vãng lai đã xóa