\(\Leftrightarrow cos\left(\pi x^2+2\pi x-\dfrac{\pi}{2}\right)=sin\left(\pi x^2\right)\)
\(\Leftrightarrow sin\left(\pi x^2+2\pi x\right)=sin\left(\pi x^2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\pi x^2+2\pi x=\pi x^2+k2\pi\\\pi x^2+2\pi x=\pi-\pi x^2+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\left(1\right)\\2x^2+2x-2k-1=0\left(2\right)\end{matrix}\right.\)
(1) có nghiệm dương nhỏ nhất \(x=1\)
Xét (2), để (2) có nghiệm \(\Rightarrow\Delta'=1+2\left(2k+1\right)\ge0\) \(\Rightarrow k\ge0\)
Khi đó (2) có 2 nghiệm: \(\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{4k+3}}{2}< 0\\x=\dfrac{-1+\sqrt{4k+3}}{2}\ge\dfrac{\sqrt{3}-1}{2}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm dương nhỏ nhất của pt đã cho là \(x=\dfrac{\sqrt{3}-1}{2}\)