Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chibi Sieu Quay
Xem chi tiết
Chibi Sieu Quay
5 tháng 5 2021 lúc 11:22

tìm cả đk giúp mik vs

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 16:47

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

Hug Hug - 3 cục bánh bao...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 12:38

Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-4\sqrt{x}+4\right)+\left(3\sqrt{x}-4\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(x+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x+4\sqrt{x}+x-4\sqrt{x}+4+3x\sqrt{x}+3\sqrt{x}-4x-4}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)}{x-\sqrt{x}}\)

\(=\dfrac{4x\sqrt{x}-7x+3\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\cdot\left(4\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}-3}{\sqrt{x}-2}\)

Để A>1 thì A-1>0

\(\Leftrightarrow\dfrac{4\sqrt{x}-3-\sqrt{x}+2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{3\sqrt{x}-1}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1\le0\\\sqrt{x}-2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x\le\dfrac{1}{9}\\x>4\end{matrix}\right.\)

quang
Xem chi tiết
Akai Haruma
15 tháng 4 2023 lúc 22:00

Đoạn $x\sqrt{x}-a$ là sao vậy bạn? Có nhầm lẫn gì không?

Nguyễn Lê Phước Thịnh
15 tháng 4 2023 lúc 23:19

\(=\left(\sqrt{x}+1-\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)

Khánh San
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 9 2021 lúc 13:56

a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)

\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)

c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)

\(\Rightarrow x\in\left\{0;1;9;16\right\}\)

 

hoàng
Xem chi tiết
hoàng
15 tháng 9 2023 lúc 15:39

help

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 18:21

loading...  => đề sai rồi bạn

Nguyễn Thành
Xem chi tiết
Võ Thị Hoài
19 tháng 10 2021 lúc 21:21

a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)

b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

        = \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\) 

        = \(\dfrac{x+1}{\sqrt{x}}\)

B = \(\dfrac{x+1}{\sqrt{x}}\)= 2

   ⇒ x + 1 = 2\(\sqrt{x}\) 

   ⇒ x - \(2\sqrt{x}\) +1 = 0

   ⇒ \(\left(\sqrt{x}-1\right)^2\) = 0

   ⇒ \(\sqrt{x}-1=0\)

⇒  x = 1 

Liên Phạm Thị
Xem chi tiết
Liên Phạm Thị
25 tháng 8 2021 lúc 19:10

mọi người ơi mình cần gấp ạ

 

NGUYỄN ĐỖ BẢO VY
Xem chi tiết
DŨNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 22:50

 

Sửa đề: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}+4\sqrt{x}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)+4\sqrt{x}\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2+4\sqrt{x}\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}\left[1+2\left(x+2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{2\left[1+2\left(x\sqrt{x}-x+2x-2\sqrt{x}+\sqrt{x}-1\right)\right]}{x-1}\)

\(=\dfrac{2\left[1+2x\sqrt{x}+2x-2\sqrt{x}-2\right]}{x-1}=\dfrac{2\left(2x\sqrt{x}+2x-2\sqrt{x}-1\right)}{x-1}\)

Nguyễn Thị Thu Phương
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 17:03

1.

\(Q=\left[\frac{\sqrt{x}+2}{(\sqrt{x}+1)^2}-\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right].\sqrt{x}(\sqrt{x}+1)\)

\(=\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}-2)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}+2)(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2x}{x-1}\)

Akai Haruma
6 tháng 8 2021 lúc 17:06

2.

\(A=\left[\frac{\sqrt{x}+2-(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{4\sqrt{x}}{x-4}\right].\frac{x-4}{\sqrt{x}+1}\)

\(=\left(\frac{4}{x-4}-\frac{4\sqrt{x}}{x-1}\right).\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{x-4}.\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{\sqrt{x}+1}\)

Akai Haruma
6 tháng 8 2021 lúc 17:09

3.

\(A=\left[\frac{\sqrt{x}(\sqrt{x}-3)+2\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{3x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}\right]:\frac{1}{(\sqrt{x}+3)^2}\)

\(=\frac{3\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}+3)}.(\sqrt{x}+3)^2=\frac{3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}(\sqrt{x}+3)^2=3(\sqrt{x}+3)\)