Sửa đề: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}+4\sqrt{x}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)+4\sqrt{x}\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2+4\sqrt{x}\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}\left[1+2\left(x+2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{2\left[1+2\left(x\sqrt{x}-x+2x-2\sqrt{x}+\sqrt{x}-1\right)\right]}{x-1}\)
\(=\dfrac{2\left[1+2x\sqrt{x}+2x-2\sqrt{x}-2\right]}{x-1}=\dfrac{2\left(2x\sqrt{x}+2x-2\sqrt{x}-1\right)}{x-1}\)