Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thế giới Anime
1. Trong mặt phẳng Oxy, cho Mleft(1;2right), Ileft(3;-1right), k2. Hỏi điểm nào trong các điểm sau đây là ảnh của điểm M qua phép vị tự tâm I, tỉ số k?A. left(4;1right)B. left(4;-2right)C. left(-1;5right)D. left(1;1right)2. Trong mặt phẳng Oxy , cho Mleft(2;3right), Mleft(3;4right), Ileft(x_o;y_oright), k2. Phép vị tự tâm I, tỉ số k biến điểm M thành điểm M. Tính Px_o+y_oA. P5B. P3C. P6D. P43. Trong mặt phẳng Oxy , cho d:2x+y-40, Ileft(-1;2right), k-2. Hỏi đường thẳng nào trong các đường thẳng s...
Đọc tiếp

Những câu hỏi liên quan
Xuân Huy
Xem chi tiết
Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

nguyễn minh trang
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 21:33

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Minh
16 tháng 5 2022 lúc 21:35

tham khảo

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2024 lúc 22:02

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=2x-m+1\)

=>\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)

\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-2m+6>0

=>-2m>-6

=>m<3

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)

\(x_1x_2\left(y_1+y_2\right)+48=0\)

=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)

=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)

=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)

=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)

=>\(\left(m-1\right)\left(-m+5\right)+12=0\)

=>\(-m^2+5m+m-5+12=0\)

=>\(-m^2+6m+7=0\)

=>\(m^2-6m-7=0\)

=>(m-7)(m+1)=0

=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

Lê Nhật Tiền
Xem chi tiết
quynhu
Xem chi tiết
DuaHaupro1
Xem chi tiết
Akai Haruma
28 tháng 4 2022 lúc 0:30

Lời giải:

Đường thẳng $(d_1)$ có VTPT $(2,-4)$

$\Rightarrow$ VTCP của $(d_1)$: $(4,2)$

VTCP của $(d_2)$: $(m, -m-1)$

Để $(d_1), (d_2)$ vuông góc với nhau khi chỉ khi 2 VTCP của 2 đường thẳng vuông góc với nhau 

$\Leftrightarrow 4m+2(-m-1)=0$

$\Leftrightarrow m=1$

 

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:17

a) Ta có: \(\left( C \right):{x^2} + {y^2} = 1 \Leftrightarrow y =  \pm \sqrt {1 - {x^2}} \).

Độ dài \(OM\) chính là giá trị tuyệt đối của hoành độ của điểm \(M\). Vậy \(OM = \left| x \right|\).

Độ dài \(MN\) chính là giá trị tuyệt đối của tung độ của điểm \(N\). Vậy \(MN = \left| {\sqrt {1 - {x^2}} } \right| = \sqrt {1 - {x^2}} \).

\(S\left( x \right) = {S_{ONP}} = \frac{1}{2}.NP.OM = MN.OM = \sqrt {1 - {x^2}} .\left| x \right|\).

b) Xét hàm số  \(S\left( x \right) = \sqrt {1 - {x^2}} .\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x\sqrt {1 - {x^2}} }&{khi\,\,0 \le x \le 1}\\{ - x\sqrt {1 - {x^2}} }&{khi\,\, - 1 \le x < 0}\end{array}} \right.\).

ĐKXĐ: \(1 - {x^2} \ge 0 \Leftrightarrow  - 1 \le x \le 1\)

Hàm số \(S\left( x \right)\) có tập xác định là \(\left[ { - 1;1} \right]\).

Vậy hàm số \(S\left( x \right)\) xác định trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\) nên liên tục trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\).

Ta có: \(S\left( 0 \right) = 0.\sqrt {1 - {0^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\sqrt {1 - {x^2}} } \right) = 0.\sqrt {1 - {0^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to {0^ - }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\sqrt {1 - {x^2}} } \right) =  - 0.\sqrt {1 - {0^2}}  = 0\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} S\left( x \right) = 0\) nên \(\mathop {\lim }\limits_{x \to 0} S\left( x \right) = 0 = S\left( 0 \right)\)

Vậy hàm số \(S\left( x \right)\) liên tục tại điểm \({x_0} = 0\). Vậy hàm số \(S\left( x \right)\) liên tục trên \(\left( { - 1;1} \right)\).

c) \(\mathop {\lim }\limits_{x \to {1^ - }} S\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x\sqrt {1 - {x^2}} } \right) = 1.\sqrt {1 - {1^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to  - {1^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( { - x\sqrt {1 - {x^2}} } \right) =  - 1.\sqrt {1 - {{\left( { - 1} \right)}^2}}  = 0\)