\(x^3-12x^2+48x-72=0\)
Tìm x, biết :
a, x^3+3x^2+2 = 0
b, x^3-12x^2+48x-72 = 0
Giúp mk vs ạ
a, Thắc mắc đề cóa sai khong .
( đáp án vẫn có nhưng là số vô tỉ nên nghe lạ á )
b, Ta có : \(x^3-12x^2+48x-72=0\)
=> \(x^3-3.x^2.4+3.x.4^2-64-8=0\)
=> \(\left(x-4\right)^3-8=0\)
=> \(\sqrt[3]{\left(x-4\right)^3}=\sqrt[3]{8}=2\)
=> \(x=6\)
Vậy ....
Tìm x, biết:
a) x3 + 3x2 + 3x + 2 = 0
b) x3 - 12x2 + 48x - 72 = 0
a) Ta có: \(x^3+3x^2+3x+2=0\)
\(\Leftrightarrow x^3+2x^2+x^2+2x+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
mà \(x^2+x+1\ne0\forall x\)
nên x+2=0
hay x=-2
Vậy: x=-2
b) Ta có: \(x^3-12x^2+48x-72=0\)
\(\Leftrightarrow x^3-6x^2-6x^2+36x+12x-72=0\)
\(\Leftrightarrow x^2\left(x-6\right)-6x\left(x-6\right)+12\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2-6x+12\right)=0\)
mà \(x^2-6x+12\ne0\forall x\)
nên x-6=0
hay x=6
Vậy: x=6
Bài 1 Tìm x, biết :
a, x^3+3x^2+3x+2=0
b, x^3-12x^2+48x-72=0
Bài 2: Rút gọn rồi tính giá trị của biểu thức
a, A = ( x^2-y)^3 - 6(y-x/2)^2 - 12(y-x/2) - 8 khi x = 4, y = 2
Giúp mk vs ạ mai mình đi học thêm rồi :))
Bài 1:
a) Ta có: \(x^3+3x^2+3x+2=0\)
\(\Leftrightarrow x^3+2x^2+x^2+2x+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\forall x\)
nên x+2=0
hay x=-2
Vậy: x=-2
b) Ta có: \(x^3-12x^2+48x-72=0\)
\(\Leftrightarrow x^3-6x^2-6x^2+36x+12x-72=0\)
\(\Leftrightarrow x^2\left(x-6\right)-6x\left(x-6\right)+12\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2-6x+12\right)=0\)
mà \(x^2-6x+12>0\forall x\)
nên x-6=0
hay x=6
Vậy: x=6
x^3+12x^2+48x+64=8x^3-12x^2+6x-1
Ta có: \(x^3+12x^2+48x+64=8x^3-12x^2+6x-1\)
\(\Leftrightarrow\left(x+2\right)^3=\left(2x-1\right)^3\)
\(\Leftrightarrow\left(x+2\right)^3-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left[\left(x+2\right)-\left(2x-1\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(2x-1\right)+\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2-2x+1\right)\left(x^2+4x+4+2x^2+3x-2+4x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(7x^2+3x-6\right)=0\)
\(\Leftrightarrow7\left(3-x\right)\cdot\left(x^2+\frac{3}{7}x-\frac{6}{7}\right)=0\)
mà 7>0
nên \(\left[{}\begin{matrix}3-x=0\\x^2+\frac{3}{7}x-\frac{6}{7}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+2\cdot x\cdot\frac{3}{14}+\frac{9}{196}-\frac{177}{196}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\left(x+\frac{3}{14}\right)^2=\frac{177}{196}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+\frac{3}{14}=\frac{\sqrt{177}}{14}\\x+\frac{3}{14}=-\frac{\sqrt{177}}{14}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-3+\sqrt{177}}{14}\\x=\frac{-3-\sqrt{177}}{14}\end{matrix}\right.\)
Vậy: \(S=\left\{3;\frac{-3+\sqrt{177}}{14};\frac{-3-\sqrt{177}}{14}\right\}\)
x3 + 12x2 + 48x + 64 = 8x3 - 12x2 + 6x - 1
\(\Leftrightarrow\) x3 + 12x2 + 48x + 64 - 8x3 + 12x2 - 6x + 1 = 0
\(\Leftrightarrow\) -7x3 + 24x2 + 42x + 65 = 0
Bn cho đề thế này ai mà giải được :vvv
giải hệ pt : \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
\(X^3+12X^2+48X+64\)
a) -x^3+12x^2+48x+64 tại X=6
b) x^3-6x^2+12x-8 tại X=22
1) x(x-3)-2x(x-3)=0
2) x(3x-1)-5(1-3x)=0
3) 5(x+3)-2x(3x+3)=0
4) 4x(x+3)-x-3=0
5) x3+15x2+75x+125=0
6) 4x2-12x+9=0
7) x2-16x+60=0
8) x3+48x=12x2+64
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
x^3+12x^2+48x+64
\(x^3+12x^2+48x+64\)
= \(\left(x^3+64\right)+\left(12x^2+48x\right)\)
= \(\left(x+4\right)\left(x^2-4x+16\right)+12x\left(x+4\right)\)
= \(\left(x+4\right)\left(x^2-4x+16+12x\right)\)
= \(\left(x+4\right)\left(x^2-8x+16\right)\)
= \(\left(x+4\right)\left(x-4\right)^2\)
giải phương trình vô tỉ sau
\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}-x^6-12x^5-48x^4-64x^3-x^2-4x=0\)
pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)
đặt\(\sqrt{x+6}=a;x^2+4x=b\)