tìm x để thỏa mãn :
a) (x+2)(x-3)<0
b )4(3x+1)(5-2x)>0
Số nguyên x thỏa mãn để (3-x)(x+2)>0. Tìm x.
vfkdkfdfdkjfkdfjdfkjdkfjmdcxnciewepokadlsfmhujgtursfezd/klx
(3-x)(x+2)>0
=> 3-x và x+2 cùng dấu
+)xét trường hợp 3-x>0 và x+2>0
=>x<3 và x>-2
=>-2<x<3
+)xét trường hợp 3-x<0 và x+2<0
=>x>3 và x<-2(vô lí)
=>-2<x<3
=> x thuộc {-1;0;1;2}
(3-x)(x+2)>0
=> 3-x và x+2 cùng dấu
+)xét trường hợp 3-x>0 và x+2>0
=>x<3 và x>-2
=>-2<x<3
+)xét trường hợp 3-x<0 và x+2<0
=>x>3 và x<-2(vô lí)
=>-2<x<3
=> x thuộc {-1;0;1;2}
tìm số nguyên x để thỏa mãn :
a) (x+2)(x-3)<0
b) 4(3x+1)(5-2x)>0
Cho hệ phương trình { ax + 2y = 3
{ x - ay = 4
a) tìm a để có nghiệm thỏa mãn x>0; y>0
b) tìm a để có nghiệm thỏa mãn x và y là 2 số đối nhau.
Câu a): Xét \(a=0\) thấy hệ có nghiệm \(x=4,y=\frac{3}{2}\) thoả đề.
Xét \(a\ne0\). Nhân 2 vế pt dưới với \(a\): \(ax-a^2y=4a\).
Lúc này trừ 2 pt với nhau vế theo vế ta được: \(\left(a^2+2\right)y=3-4a\).
\(y=\frac{3-4a}{a^2+2}\) dương khi \(a\le\frac{3}{4}\).
\(x=ay+4=\frac{a\left(3-4a\right)+4\left(a^2+2\right)}{a^2+2}=\frac{3a+8}{a^2+2}\) dương khi \(a\ge-\frac{8}{3}\)
Vậy \(-\frac{8}{3}\le a\le\frac{3}{4}\). thoả câu a.
------
Câu b): Để hệ có nghiệm \(x=-y\) thì hệ sau phải có nghiệm: \(\hept{\begin{cases}ax-2x=3\\x+ax=4\end{cases}}\)
Trừ 2 pt vế theo vế được: \(3x=1\Leftrightarrow x=\frac{1}{3}\).
Thế vào tìm được \(a=11\)
Áp dụng định thức Grane :
\(D=-a^2-2\), \(D_x=-3a-8\), \(D_y=4a-3\)
Vì \(D=-a^2-2< 0\) nên hệ luôn có hai nghiệm phân biệt.
\(\hept{\begin{cases}x=\frac{D_x}{D}=\frac{3a+8}{a^2+2}\\y=\frac{D_y}{D}=\frac{3-4a}{a^2+2}\end{cases}}\). Theo đề thì \(\hept{\begin{cases}\frac{3a+8}{a^2+2}>0\\\frac{3-4a}{a^2+2}>0\end{cases}}\) \(\Leftrightarrow-\frac{8}{3}\le a\le\frac{3}{4}\)
b/ Ta có :\(x+y=0\) \(\Rightarrow\frac{3a+8}{a^2+2}+\frac{3-4a}{a^2+2}=0\) \(\Leftrightarrow\frac{-a+11}{a^2+2}=0\Leftrightarrow a=11\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Bài 6: Cho PT x² + mx + m+3=0.
c) Giải PT khi m -2.
d) Tìm m để PT có hai nghiệm phân biệt x, ,x, thỏa mãn x +x =9.
e) Tim m để PT có hai nghiệm phân biệt x, r, thỏa mãn 2x, +3x, = 5.
f) Tìm m để PT có nghiệm x, =-3. Tính nghiệm còn lại.
g) Tìm biểu thúức liên hệ giữa hai nghiệm phân biệt x,,x, không phụ thuộc vào m.
GIÚP MÌNH GẤP VỚI Ạ MÌNH ĐANG CẦN GẤP ;<
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Cho biểu thức 2x-9/x^2-5x+6-x+3/x-2-2x+1/3-x
a)Tìm x để P=-1/2,P<1
b)tính P khi x thỏa mãn x^2 -4=0
c) X thuộc Z để P nhận giá trị nguyên dương
Cho \(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\)
a ) Rút gọn B
b ) Tính B tại x thỏa mãn |2x+1|=5
c ) Tìm x để \(B=-\dfrac{3}{5}\)
d ) Tìm x để B < 0
`đk:x ne +-3,x ne -2`
`B=(21/(x^2-9)-(x-4)/(3-x)-(x-1)/(3+x)):(1-1/(x+3))`
`=(21/(x^2-9)+(x-4)/(x-3)-(x-1)/(x+3)):((x+3-1)/(x+3))`
`=((21+x^2-x-12-x^2+4x-3)/((x-3)(x+3))):(x+2)/(x+3)`
`=(3x+6)/((x-3)(x+3))*(x+3)/(x+2)`
`=(3x+6)/((x-3)(x+2))`
`=3/(x-3)`
`b)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(tm)\\x=-3(l)\end{array} \right.\)
`=>B=3/(2-3)=-3`
`c)B=-3/5`
`<=>3/(x-3)=3/(-5)`
`<=>x-3=-5`
`<=>x=-2(l)`
`d)B<0`
`<=>3/(x-3)<0`
Mà `3>0`
`=>x-3<0<=>x<3`
a) đk: \(x\ne\pm3\)
\(B=\left[\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right]:\left(\dfrac{x+3-1}{x+3}\right)\)
= \(\left[\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\dfrac{x+2}{x+3}\)
= \(\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}\)
= \(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b) Để \(\left|2x+1\right|=5\)
<=> \(\left[{}\begin{matrix}2x+1=5< =>x=2\left(c\right)\\2x+1=-5< =>x=-3\left(l\right)\end{matrix}\right.\)
Thay x = 2, ta có;
B = \(\dfrac{3}{2-3}=-3\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3}{x-3}=\dfrac{-3}{5}\)
<=> x - 3 = -5
<=> x = -2
d) Để B < 0
<=> \(\dfrac{3}{x-3}< 0\)
<=> x - 3 < 0
<=> x < 3
a)\(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\\ =\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x+3}\)
\(=\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b)\(\left|2x+1\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\left(loại\right)\end{matrix}\right.\)
với x=2 gt của B là
\(B=\dfrac{3}{2-3}=-3\)
c)\(B=\dfrac{3}{x-3}=-\dfrac{3}{5}\Leftrightarrow x-3=-5\Leftrightarrow x=-2\)
d) \(B=\dfrac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
tự kết luận mỗi câu
B1, Cho x, y>0 thỏa mãn x+y=4/3. Tìm gtnn của A=3/x+1/3y
B2, Cho x,y,z thỏa mãn x2 + 2y2 + 10z2= 2015. Tìm gtnn của K= 2xy - 8yz - 2zx
B3, Cho x>=3. Tìm gtnn của M=x + 1/x2
B4, Cho a,b,c >0 thỏa mãn a+b+c=3. Tìm gtln của S=căn (3a+bc) + căn (3b+ca) + căn (3c+ab)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame