a)Chứng minh rằng
92012 – 343 – 830 chia hết cho 10
b)Tìm x biết
2017|x-12|+(x-12)2=2016|12-x|
Các bạn giúp mik vs:
a) -187(813+2016)-813(2016-187)
b) x+2 chia hết cho x+1 với x là số nguyên
c) tìm số nguyên x,y biết (x+1)(y-3)=-3
d) cho S = 3/10 + 3/11 + 3/12 + 3/12 + 3/13 + 3/14 . chứng minh rằng : 1 < S < 2
Cho A = x + 3 + 32 + 33 + 34 +.................. + 32015 + 32016 + 32017.
Tìm số tự nhiên x để A chia hết cho 13 biết x chia hết cho 12, x < 50.
Mình giải bài này rồi mà không biết đúng hay sai nên các bạn làm bài này cho tớ xem hộ tớ đúng không nhé. Cảm ơn!
A = x + 3 + 32 + 33 + 34 +.........................+ 32015 + 32016 + 32017.
A có: (2017 - 1) + 1 = 2018 số hạng.
2018 : 3 = 672 dư 2
A = (x + 3) + (32 + 33 + 34) + .........................+ (32015 + 32016 + 32017)
A = (x + 3) + 32.(1 + 3 + 32) + ..........................+ 32015.(1 + 3 + 32)
A = (x + 3) + 32. 13 +...........................+ 32015. 13
A = (x + 3) + 13.(32 +.............................+32015)
Mà A chia hết cho 13 => x + 3 chia hết cho 13.
=> x + 3 thuộc B(13)
B(13) = {0 ; 13 ; 26 ; 39 ; 52 ;.......}
=> x + 3 thuộc {0 ; 13 ; 26 ; 39 ; 52 ;.......}
=> x thuộc {-3 ; 10 ; 23 ; 36 ; 49 ;.......}
Mà x thuộc N, x chia hết cho 12 và x < 50.
=> x = 36.
Vậy số tự nhiên x cần tìm để A chia hết cho 13 là 36.
(Sao ko ai biết cách làm bài này thế??)
1) Tìm x thuộc N để A, B chia hết cho 2 :
A = 18 + 8 + 12 + x
B = 76 + 9 + x
2) Cho a thuộc N biết a Chia hết cho 12 dư 8. Hỏi a có chia hết cho 4 và 6 không ?
3) Chứng minh rằng :
a, 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 1
6) Cho A= 2 + 2^2 + 2^3 + ........ + 2^60
Chứng minh A chia hết cho 3, 7, 15
cho A = x + 3 + 32 + 33.....32016+ 32017 Tìm số tự nhiên x để A chia hết cho 13 biết x chia hết cho 12 và x < 50
\(A=x+3+\left(3^2+3^3+3^4\right)+...+\left(3^{2015}+3^{2016}+3^{2017}\right)\)
\(A=x+3+3^2\left(1+3+3^2\right)+...+3^{2015}\left(1+3+3^2\right)\)
\(A=x+3+13\left(3^2+3^5+...+3^{2015}\right)\)
Do \(13\left(3^2+3^5+...+3^{2015}\right)⋮13\Rightarrow\) để A chia hết cho 13 thì \(x+3⋮13\Rightarrow x+3=B\left(13\right)\)
Do \(x< 50\Rightarrow x+3< 53\Rightarrow x+3=\left\{13;26;39;52\right\}\)
\(x+3=13\Rightarrow x=10\) (không chia hết cho 12 => loại)
\(x+3=26\Rightarrow x=23\) (không chia hết cho 12=>loại)
\(x+3=39\Rightarrow x=36⋮12\)
\(x+3=52\Rightarrow x=49\) (không chia hết 12 =>loại)
Vậy \(x=36\)
Chứng minh rằng : A= (x+2016).(x+2017) chia hết cho 2,với mọi x thuộc N
ta có x+2016 và x+2017 là 2 số liên tiếp
=> 1 trong 2 số có 1 số chia hết cho 2
nên A=(x+2016)(x+2017) chia hết cho 2
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
1)
+Nếu x lẻ thì x+2017 là chẵn \(⋮2\)
+Nếu x là chẵn thì x+2018 cũng là chãn \(⋮2\)
\(\Rightarrow dpcm\)
tìm x en biết
a, x + 12 CHIA HẾT CHO x - 4
b, 2.x + 5 chia hết cho x - 1
c, 2 .x + 6 chia hết cho 2 . x - 1
d , 3 . x + 7 chia hết cho 2 . x - 2
e , 5 . x + 12 chia hết cho x - 3
`**x in NN`
`a)x+12 vdots x-4`
`=>x-4+16 vdots x-4`
`=>16 vdots x-4`
`=>x-4 in Ư(16)={+-1,+-2,+-4,+-16}`
`=>x in {3,5,6,2,20}` do `x in NN`
`b)2x+5 vdots x-1`
`=>2x-2+7 vdots x-1`
`=>7 vdots x-1`
`=>x-1 in Ư(7)={+-1,+-7}`
`=>x in {0,2,8}` do `x in NN`
`c)2x+6 vdots 2x-1`
`=>2x-1+7 vdots 2x-1`
`=>7 vdots 2x-1`
`=>2x-1 in Ư(7)={+-1,+-7}`
`=>2x in {0,2,8,-6}`
`=>x in {0,1,4}` do `x in NN`
`d)3x+7 vdots 2x-2`
`=>6x+14 vdots 2x-2`
`=>3(2x-2)+20 vdots 2x-2`
`=>2x-2 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
Vì `2x-2` là số chẵn
`=>2x-2 in {+-2,+-4,+-10,+-20}`
`=>x-1 in {+-1,+-2,+-5,+-10}`
`=>x in {0,2,3,6,11}` do `x in NN`
Thử lại ta thấy `x=0,x=2,x=6` loại
`e)5x+12 vdots x-3`
`=>5x-15+17 vdots x-3`
`=>x-3 in Ư(17)={+-1,+-17}`
`=>x in {2,4,20}` do `x in NN`
a) Ta có: \(x+12⋮x-4\)
\(\Leftrightarrow16⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(16\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
Vậy: \(x\in\left\{0;5;3;6;2;8;20\right\}\)
b) Ta có: \(2x+5⋮x-1\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vậy: \(x\in\left\{0;2;8\right\}\)
c) Ta có: \(2x+6⋮2x-1\)
\(\Leftrightarrow7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)
Vậy: \(x\in\left\{0;1;4\right\}\)
d) Ta có: \(3x+7⋮2x-2\)
\(\Leftrightarrow6x+14⋮2x-2\)
\(\Leftrightarrow20⋮2x-2\)
\(\Leftrightarrow2x-2\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
\(\Leftrightarrow2x\in\left\{3;1;4;0;6;-2;7;-3;12;-8;22;-18\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{2};2;0;3;-1;\dfrac{7}{2};-\dfrac{3}{2};6;-4;11;-9\right\}\)
Vậy: \(x\in\left\{2;0;3;6;11\right\}\)
e) Ta có: \(5x+12⋮x-3\)
\(\Leftrightarrow27⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
\(\Leftrightarrow x\in\left\{4;2;6;0;12;-6;30;-24\right\}\)
Vậy: \(x\in\left\{4;2;6;0;12;30\right\}\)
Giải:
a) \(x+12⋮x-4\)
\(\Rightarrow x-4+16⋮x-4\)
\(\Rightarrow16⋮x-4\)
\(\Rightarrow x-4\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Ta có bảng giá trị:
x-4 | -16 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 16 |
x | -12 (loại) | -4 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 5 (t/m) | 6 (t/m) | 8 (t/m) | 12 (t/m) | 20 (t/m) |
Vậy \(x\in\left\{0;2;3;5;6;8;12;20\right\}\)
b) \(2x+5⋮x-1\)
\(\Rightarrow2x-2+7⋮x-1\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
x | -6 (loại) | 0 (t/m) | 2 (t/m) | 8 (t/m) |
Vậy \(x\in\left\{0;2;8\right\}\)
c) \(2x+6⋮2x-1\)
\(\Rightarrow2x-1+7⋮2x-1\)
\(\Rightarrow7⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2x-1 | -7 | -1 | 1 | 7 |
x | -3 (loại) | 0 (t/m) | 1 (t/m) | 4 (t/m) |
Vậy \(x\in\left\{0;1;4\right\}\)
d) \(3x+7⋮2x-2\)
\(\Rightarrow6x-6+20⋮2x-2\)
\(\Rightarrow20⋮2x-2\)
\(\Rightarrow2x-2\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Vì \(2x-2\) là số chẵn nên \(2x-2\in\left\{\pm2;\pm4;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
2x-2 | -20 | -10 | -4 | -2 | 2 | 4 | 10 | 20 |
x | -9 (loại) | -4 (loại) | -1 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 6 (t/m) | 11 (t/m) |
Vậy \(x\in\left\{0;2;3;6;11\right\}\)
e) \(5x+12⋮x-3\)
\(\Rightarrow5x-15+27⋮x-3\)
\(\Rightarrow27⋮x-3\)
\(\Rightarrow x-3\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Ta có bảng giá trị:
x-3 | -27 | -9 | -3 | -1 | 1 | 3 | 9 | 27 |
x | -24 (loại) | -6 (loại) | 0 (t/m) | 2 (t/m) | 4 (t/m) | 6 (t/m) | 12 (t/m) | 30 (t/m) |
Vậy \(x\in\left\{0;2;4;6;12;30\right\}\)
1) Tìm x thuộc N để A, B chia hết cho 2 :
A= 18+8+12+x
B = 76+9+x
2) Cho a thuộc N biết a chia hết cho 12 dư 8. Hỏi a có chia hết cho 4, 6 không
3) Tìm x :
a, 3^x = 243
b, x^5 = 32
c, x^6 = 729
4) Chứng minh rằng :
a, 10^28 +8 chia hết cho 3
b, 8^8 + 2^20 chia hết cho 1
5) Cho A = 2+ 2^2 + 2^3 + .......... + 2^60
Chứng minh A chia hết cho 3, 7, 15
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3
tìm số tự nhiên x nhỏ nhất biết rằng x+2 chia hết cho 12 và x+2 chia hết cho 20
Tham khảo vì mik hơi lừi;
Vì x là số nhỏ nhất và x chia hết 15 và 18
=>x �ε BCNN ( 15;18)
15=3.5
18=2.32
=>BCNN(15;18)=32 . 5.2=90
Vậy x=90
Vì x là số nhỏ nhất và x chia hết 15 và 18
=>x �ε BCNN ( 15;18)
15=3.5
18=2.32
=>BCNN(15;18)=32 . 5.2=90
Vậy x=90