Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Khang 9/9
Xem chi tiết
Nguyễn Huy Tú
16 tháng 2 2022 lúc 19:11

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

missing you =
16 tháng 2 2022 lúc 20:00

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

Đào Minh Phượng
Xem chi tiết
Xyz OLM
1 tháng 4 2022 lúc 20:02

Phương trình 2 nghiệm khi

\(\Delta=\left(-2\right)^2-4\left(-m+2\right).1=4m-4\ge0\Leftrightarrow m\ge1\)

Hệ thức Vière : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=2-m\end{matrix}\right.\)

Khi đó |x1 - x2| = 2

<=> (|x1 - x2|)2 = 4

<=> (x1 - x2)2 = 4

<=> (x1 + x2)2 - 4x1x2 = 4

<=> 22 - 4(2 - m) = 4

<=> 2 - m = 0 

<=> m = 2 (tm) 

Oanh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 21:32

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

𝓓𝓾𝔂 𝓐𝓷𝓱
2 tháng 4 2021 lúc 22:34

Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh 

b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)

              \(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)

              \(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)

\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)

\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)

  Vậy ...

lo9_winner
3 tháng 7 2021 lúc 20:10

\Delta&#x27;=1^2-m=1-mΔ′=12−m=1−m

phương trình có 2 nghiệm <=>\Delta&#x27;\ge0Δ′≥0

<=>1-m\ge01−m≥0

<=>m\le1m≤1

+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1​+x2​=−2(1)x1​x2​=m(2)​

Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1​+2x2​=1(3)

từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1​+x2​=−23x1​+2x2​=1​ <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1​=5x2​=−7​. Thay vào (2) : 5.(-7)= m <=> m= -35

Thị Minh Thư Nguyễn
Xem chi tiết
YangSu
23 tháng 3 2023 lúc 18:10

\(x^2-2x-m^2-1=0\)

Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Leftrightarrow2^2-2.\left(-m^2-1\right)=20\)

\(\Leftrightarrow4+2m^2+2-20=0\)

\(\Leftrightarrow2m^2=14\)

\(\Leftrightarrow m=7\)

\(\Leftrightarrow m=\pm\sqrt{7}\)

Nguyễn Đình Tuấn Khang
Xem chi tiết
Trần Ái Linh
22 tháng 7 2021 lúc 8:43

Có: `\Delta'=1^2-(-m^2+1)=m^2`

PT có 2 nghiệm phân biệt `<=> m^2>0 <=> m \ne 0`

`=> x_1=2+m; x_2=2-m`

Theo đề: `x_2=x_1^2 <=>2-m=(2+m)^2<=>[(m=(-5+\sqrt17)/2(L)),(m=(-5-\sqrt17)/2(L))`

Vậy không có `m` thỏa mãn.

Phạm Tuân
Xem chi tiết
nguyễn duy khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 10:15

Δ=(-2)^2-4(m-1)=4-4m+4=8-4m

Để phương trình có hai nghiệm thì 8-4m>=0

=>m<=2

x1+x2=2; x1x2=m-1

=>x1=2-x2

=>x1+1=3-x2

x1^2+x2^2=(x1+x2)^2-2x1x2=2^2-2(m-1)=4-2m+2=6-2m

=>x1^2=6-2m-x2^2

2x1(x1-x2)+3=7m+(x2+2)^2

=>2x1^2-2x1x2+3=7m+x2^2+2x2+4

=>2(6-2m-x2^2)-2x1x2+3-7m-x2^2-2x2-4=0

=>2(6-2m-x2^2)-2x2(3-x2)-7m-1=0

=>12-4m-2x2^2-6x2-2x2^2-7m-1=0

=>-4x2^2-6x2-11m+11=0

=>4x2^2+6x2+11m-11=0(1)

Để phương trình (1) có nghiệm thì 6^2-4*4*(11m-11)>=0

=>36-16(11m-11)>=0

=>16(11m-11)<=36

=>11m-11<=9/4

=>11m<=53/4

=>m<=53/44

Bao An
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2022 lúc 21:53

\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

a.

\(x_1^2+x_2^2-x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)

\(\Leftrightarrow4m^2+3=7\)

\(\Rightarrow m^2=1\Rightarrow m=\pm1\)

b.

\(x_1-x_2=0\Rightarrow x_1=x_2\Rightarrow x_1x_2=x_2^2\ge0\) (vô lý do \(x_1x_2=-1< 0\) với mọi m)

Vậy ko tồn tại m thỏa mãn yêu cầu

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 4 2017 lúc 16:26

Phương trình (1) có 2 nghiệm x1; x2 ⇔ Δ ' = ( m + 1 ) 2 − m 2 ≥ 0 ⇔ 2 m + 1 ≥ 0 ⇔ m ≥ − 1 2  

Theo định lý Viét ta có x 1 + x 2 = 2 m + 2 x 1 x 2 = m 2  

Có  ( 2 ) ⇔ x 1 2 − 2 x 1 m + m 2 + x 2 = m + 2 ⇔ x 1 ( x 1 − 2 m ) + m 2 + x 2 = m + 2  

Thay x 1 − 2 m = 2 − x 2 ; m 2 = x 1 x 2  vào ta có x 1 ( 2 − x 2 ) + x 1 x 2 + x 2 = m + 2 ⇔ 2 x 1 + x 2 = m + 2  

Ta có hệ x 1 + x 2 = 2 m + 2 2 x 1 + x 2 = m + 2 ⇔ x 1 = − m x 2 = 3 m + 2 ⇒ m 2 = x 1 x 2 = − m ( 3 m + 2 ) ⇒ 4 m 2 + 2 m = 0 ⇔ m = 0 m = − 1 2  (thỏa mãn)

+ Với m = 0:  ( 1 ) ⇔ x 2 − 2 x = 0 ⇔ x 1 = 0 x 2 = 2  (thỏa mãn đề bài)

+ Với m = − 1 2 : ( 1 ) ⇔ x 2 − x + 1 4 = 0 ⇔ x 1 = x 2 = 1 2  (thỏa mãn đề bài)

Vậy m = 0 hoặc m = -1/2 là tất cả các giá trị m cần tìm.

 

khong có
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 8:46

Để pt có hai nghiệm \(x_1;x_2\Leftrightarrow\Delta\ge0\)

 \(\Leftrightarrow4-m^2\ge0\) \(\Leftrightarrow m\in\left[-2;2\right]\)

Theo định lí viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(H=2x_1x_2-x_1-x_2+9=m^2-2-m+9\)\(=m^2-m+7\)

Ta thấy H là một parabol và m nằm trong \(\left[-2;2\right]\) ,max của chúng sẽ chỉ ở vị trí m=-2 hoặc m=2 

Tại m=-2 thì H=13

Tại m=2 thì H=9
Vậy maxH=132 khi m=-2 

(Mình chỉ biets trình bày cách này thôi, nếu bạn biết vẽ bảng biến thiên sẽ dễ hơn)