c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)
\(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)
\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)
Vậy ...
\Delta'=1^2-m=1-mΔ′=12−m=1−m
phương trình có 2 nghiệm <=>\Delta'\ge0Δ′≥0
<=>1-m\ge01−m≥0
<=>m\le1m≤1
+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1+x2=−2(1)x1x2=m(2)
Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1+2x2=1(3)
từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1+x2=−23x1+2x2=1 <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1=5x2=−7. Thay vào (2) : 5.(-7)= m <=> m= -35