Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen hoan
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 16:27

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2017 lúc 5:43

Đáp án A

Phương pháp: Sử dụng phương pháp tích phân từng phần tính F(x)

Cách giải:

=>

Pro No
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
7 tháng 2 2022 lúc 19:46

undefined

Trần Tuấn Hoàng
7 tháng 2 2022 lúc 20:00

\(P=\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\) (\(a\ne b;a\ne0;a\ne-b;b\ne0\))

\(=\dfrac{a^2}{b\left(a+b\right)}+\dfrac{b^2}{a\left(b-a\right)}-\dfrac{a^2+b^2}{ab}\)

\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^4-b^4\right)}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{-a^3b-b^3a}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a+b\right)\left(a-b\right)}=-\dfrac{a^2+b^2}{a^2-b^2}\).

b) -Ta có: \(P=0\)

\(\Leftrightarrow-\dfrac{a^2+b^2}{a^2-b^2}=0\)

\(\Leftrightarrow a^2+b^2=0\)

-Vì \(a^2\ge0;b^2\ge0\)

\(\Rightarrow a=0;b=0\) (không thỏa mãn điều kiện).

-Vậy không có giá trị nào của a,b để \(P=0\).

c) 

 

 

 

Nguyễn Quang Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2017 lúc 4:02

Tìm giá trị của phân thức khi biến thỏa mãn điều kiện cho trước | Toán lớp 8

Nông Quang Minh
Xem chi tiết
Lê Thị Thục Hiền
27 tháng 6 2021 lúc 16:39

Áp dụng AM-GM có:

\(2a^2+2b^2\ge4ab\)

\(8b^2+\dfrac{1}{2}c^2\ge4bc\)

\(8a^2+\dfrac{1}{2}c^2\ge4ac\)

Cộng vế với vế \(\Rightarrow VT\ge4\left(ab+bc+ac\right)=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab+bc+ac=1\\a=b=\dfrac{c}{4}\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{3};c=\dfrac{4}{3}\)

Ngọc Anh
Xem chi tiết
ĐINH THÙY LINH
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2018 lúc 8:25

a) Rút gọn được b + 1 3 b 2 ;         b) Rút gọn được  3 u 4 v 3 .

Đạt Nguyễn
Xem chi tiết
Trên con đường thành côn...
15 tháng 8 2021 lúc 15:21

undefined

undefined