rút gọn:
M=(x-3)\(^3\) - (x+1)\(^3\) + 12x. (x-1)
rút gọn:M=\(\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{2-\sqrt{x}}-\frac{2x-2\sqrt{x}}{x-4}\right)\cdot\frac{2\sqrt{x}-2}{3\sqrt{x}-6}\)
\(M=\dfrac{x-3\sqrt{x}+2+x+3\sqrt{x}+2-2x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\sqrt{x}-2}{3\sqrt{x}-6}\)
\(=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\left(\sqrt{x}-1\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{3\left(\sqrt{x}-2\right)^2}\)
rút gọn:M=\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
Bài làm:
Ta có: \(M=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) \(\left(x>0;x\ne1\right)\)
\(M=\frac{x-1}{2\sqrt{x}}.\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(M=\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)
\(M=\frac{-4x}{2\sqrt{x}}\)
\(M=-2\sqrt{x}\)
Rút gọn các biểu thức sau
1. (x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3
2. (x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8
1) \(\left(x+1\right)^3-\left(x-4\right)\left(x+4\right)-x^3\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^2-16\right)-x^3\)
\(=x^3+3x^2+3x+1-x^2+16-x^3\)
\(=2x^2+3x+17\)
2) \(\left(x+2\right)^3-x\left(x+3\right)\left(x-3\right)-12x^2-8\)
\(=\left(x^3+6x^2+12x+8\right)-x\left(x^2-9\right)-12x^2-8\)
\(=x^3+6x^2+12x+8-x^3+9x-12x^2-8\)
\(=-6x^2+21x\)
`@` `\text {Ans}`
`\downarrow`
`1.`
\((x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3\)
`= x^3 + 3x^2 + 3x + 1 - [ x(x+4) - 4(x+4)] - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 + 4x - 4x - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - x^2 + 16 - x^3`
`= (x^3 - x^3) + (3x^2 - x^2) + 3x + (1+16)`
`= 2x^2 + 3x + 17`
`2.`
\((x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8\)
`= x^3 + 6x^2 + 12x + 8 - [ (x^2 + 3x)(x-3)] - 12x^2 - 8`
`= x^3 + 6x^2 + 12x + 8 - (x^3 - 9x) - 12x^2 - 8`
`= x^3 + 6x^2 + 12x +8 - x^3 + 9x - 12x^2 - 8`
`= (x^3 - x^3) + (6x^2 - 12x^2) + (12x + 9x) + (8-8)`
`= -6x^2 + 21x `
Rút gọn biểu thức
(2x-1)^3 -8(x-3)*(3+x)+12x(x-2)
\(\left(2x-1\right)^3-8\left(x-3\right)\left(x+3\right)+12x\left(x-2\right)\)
\(=8x^3-12x^2+6x-1-8\left(x^2-9\right)+12x^2-24x\)
\(=8x^3-18x-1-8x^2+72=8x^3-8x^2-18x+71\)
Rút gọn .
a) (1-2x)3-(1+2x)3
b) (x-2)3-x3-x2+8
c) x3 +(2-x)3+6x2+12x
a: (1-2x)^3-(1+2x)^3
\(=1^3-3\cdot1^2\cdot2x+3\cdot1\cdot\left(2x\right)^2-8x^3-8x^3-12x^2-6x-1\)
\(=1-6x+12x^2-8x^3-8x^3-12x^2-6x-1\)
\(=-16x^3-12x\)
b: \(=x^3-6x^2+12x-8-x^3-x^2+8\)
\(=-7x^2+12x\)
c: \(=x^3+8-12x+6x^2-x^3+6x^2+12x\)
\(=12x^2+8\)
Rút gọn phân thức
a)3x2 - 12x / x(x - 4)
b) x2+ 2x + 1 / 3(x + 1)
\(a,\dfrac{3x^2-12x}{x\left(x-4\right)}=\dfrac{3x\left(x-4\right)}{x\left(x-4\right)}=3\\ b,\dfrac{x^2+2x+1}{3\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{3\left(x+1\right)}=\dfrac{x+1}{3}\)
Rút gọn phân thức
a)3x2 - 12x / x(x - 4)
b) x2+ 2x + 1 / 3(x + 1)
\(a,\dfrac{3x^2-12x}{x\left(x-4\right)}=\dfrac{3x\left(x-4\right)}{x\left(x-4\right)}=3\\ b,\dfrac{x^2+2x+1}{3\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{3\left(x+1\right)}=\dfrac{x+1}{3}\)
(x-3)^3 - (x+1)^3 + 12x(x-1)
Mn giúp mình rút gọn chi tiết đầy đủ các bước nhé
(x - 3)3 - (x + 1)3 + 12x (x - 1)
= x3 - 3x2 . 3 + 3x . 32 - 27 - (x3 + 3x2 . 1 + 3x . 12 + 13) + 12x . x + 12x . (-1)
= x3 - 9x2 + 27x - 27 - x3 - 3x2 - 3x - 1 + 12x2 - 12x
= (x3 - x3) + (12x2 - 9x2 - 3x2) + (27x - 3x - 12x) - (27 + 1)
= 12x - 28
\(\left(x-3\right)^3-\left(x+1\right)^3+12x\left(x-1\right)\)
\(\Leftrightarrow\left(x^3-3x^23+3x3^2-3^3\right)-\left(x^3+3x^21+3x1^2+1^3\right)+12x^2-12x\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3-3x^2-3x-1+12x^2-12x\)
\(\Leftrightarrow12x-28=0\)
\(\Leftrightarrow12x=28\)
\(\Leftrightarrow x=\frac{7}{3}\)
Vậy S={\(\frac{7}{3}\)} là nghiệm pt
1.rút gọn bt A= (x+2)3-2x(x+3)+(x3-8):(x-2)
2. tìm x biết:
a. 3x2-12x=0
b.4x2-1-4(1-2x)=0
1 Rút gọn:
(x+5)^3-x^3-125
2 Tìm x:
x^3+6x^3+12x+8=0
(x+5)3-x3-125
=x3+53-x3-53
=0
1. \(\left(x+5\right)^3-x^3-125\)
\(=x^3+15x^2+75x+125-x^3-125\)
\(=15x^2+75x\)
2. \(x^3+6x^2+12x+8=0\)
\(\Leftrightarrow x^3+2x^2+4x^2+8x+4x+8=0\)
\(\Leftrightarrow x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
1. \(\left(x+5\right)^3-x^3-125\)
=\(x^3+3\cdot x^2\cdot5+3\cdot x\cdot5^2+5^3-x^3-125\)
=\(x^3+15x^2+75x+125-x^3-125\)
=\(15x^2+75x\)
=\(15x\left(x+5\right)\)
2. \(x^3+6x^2+12x+8=0\)
\(x^3+2x^2+4x^2+8x+4x+8=0\)
\(x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)=0\)
\(\left(x+2\right)\left(x^2+4x+4\right)=0\)
\(\left(x+2\right)\left(x+2\right)^2=0\)
\(\left(x+2\right)^3=0\)
\(x+2=0\)
\(x=-2\)