tìm x
\(\dfrac{3x}{4}=-\dfrac{1}{2}\)
Tìm x:
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=\dfrac{-1}{3}\)
c) \(x:3\dfrac{1}{15}=1\dfrac{1}{2}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
\(\Rightarrow-x^2=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-6\right\}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{9}+\dfrac{-9x}{9}=\dfrac{-3}{9}\)
\(\Rightarrow5-9x=-3\)
\(\Rightarrow-9x=-8\)
\(\Rightarrow x=\dfrac{8}{9}\)
Vậy: \(x=\dfrac{8}{9}\)
c) \(x:3\dfrac{1}{5}=1\dfrac{1}{2}\)
\(\Rightarrow x:\dfrac{16}{5}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}.\dfrac{16}{5}\)
\(\Rightarrow x=\dfrac{24}{5}\)
Vậy: \(x=\dfrac{24}{5}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
\(\Rightarrow\left(3x-1\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\dfrac{4}{3}\right\}\)
Tìm x, biết
a)\(\dfrac{1}{2}\)x\(x\)-\(\dfrac{7}{3}\)=\(\dfrac{-5}{6}\)+\(\dfrac{3}{4}\)x\(x\)
b)\(\dfrac{4}{5}\)x\(x\)-\(\dfrac{6}{5}\)=\(\dfrac{1}{2}\)+\(\dfrac{3}{2}\)x\(x\)
c)\(\dfrac{2}{5}\)x(3x\(x\)+\(\dfrac{3}{4}\))=\(1\dfrac{1}{5}\)-\(\dfrac{1}{3}\)x\(x\)
d)2x(3x\(x \)+\(\dfrac{3}{4}\))+\(\dfrac{4}{5}\)=\(\dfrac{1}{2}\)-2x\(x\)
giúp mình giải bài toán trên với. Mình cảm ơn rất nhiều
a: =>1/2x-3/4x=-5/6+7/3
=>-1/4x=14/6-5/6=3/2
=>x=-3/2*4=-6
b: =>4/5x-3/2x=1/2+6/5
=>-7/10x=17/10
=>x=-17/7
c: =>6/5x+6/20=6/5-1/3x
=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10
=>x=27/46
d: =>6x+3/2+4/5=1/2-2x
=>8x=1/2-3/2-4/5=-1-4/5=-9/5
=>x=-9/40
Giải phương trình
1, \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
2, \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)3, \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{2x^2+2}\)4, \(\dfrac{2}{x+1}+\dfrac{3x+1}{x+1}=\dfrac{1}{\left(x+1\right)\left(x-2\right)}\)5, \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)
Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)
2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
Suy ra: \(9x^2+6x+24x+16=9x^2\)
\(\Leftrightarrow30x+16=0\)
\(\Leftrightarrow30x=-16\)
hay \(x=-\dfrac{8}{15}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)
giải phương trình 1)\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)2) \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\)3) \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)4) \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{2x^2+2}\)5) \(\dfrac{2}{x+1}+\dfrac{3x+1}{x+1}=\dfrac{1}{\left(x+1\right)\left(x-2\right)}\)
giúp mình với ạ câu nào cũng được
Tìm x:
a) \(\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
b) \(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\left(\dfrac{7}{x}-2\right)\)
a: =>2(2x-3)-9=5-3x-2
=>4x-6-9=-3x+3
=>4x-15=-3x+3
=>7x=18
=>x=18/7
b: =>\(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\dfrac{21}{3x}+2\)
=>\(\dfrac{23}{3x}=\dfrac{4}{5}+2+\dfrac{1}{4}=\dfrac{61}{20}\)
=>3x=460/61
=>x=460/183
Bài 1:Tìm đa thức M
a)\(\dfrac{^{x^3}+27}{x^2-3x+9}\)=\(\dfrac{x+3}{M}\)
b)\(\dfrac{M}{x+4}\)=\(\dfrac{x^2-8x+16}{16-x^2}\)
c)\(\dfrac{x-2y}{M}\)=\(\dfrac{3x^2-7xy+2y^2}{3x^2+5xy-2y^2}\)
a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
Tìm x, biết:
i) 4*3x+3x+1=63
k)9*\(\left(\dfrac{2}{3}\right)^{x+2}\)-\(\left(\dfrac{2}{3}\right)^x\)=\(\dfrac{4}{3}\)
\(4.3^x+3^{x+1}=63\)
\(\Rightarrow4.3^x+3.3^x=63\)
\(\Rightarrow7.3^x=63\Rightarrow3^x=9=3^2\Rightarrow x=2\)
\(9.\left(\dfrac{2}{3}\right)^{x+2}-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow9.\left(\dfrac{2}{3}\right)^2\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow9.\dfrac{4}{9}^{ }.\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\left(4-1\right)=\dfrac{4}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\dfrac{1}{3}=\dfrac{4}{3}\Rightarrow\left(\dfrac{2}{3}\right)^x=4\)
mà \(0< \left(\dfrac{2}{3}\right)^x< 1;4>0;x>0\)
\(\Rightarrow x\in\varnothing\)
\(\dfrac{1}{2x-x^2-4}\) tìm GTLN/ GTNN
\(\dfrac{3x^2+14}{x^2+4}\)
\(\dfrac{2x+1}{x^2+2}\)
Bài 1: Tìm x, biết
a) 3\(\dfrac{1}{3}\) x+ 16\(\dfrac{3}{4}\) = -13,25
b) 3\(\dfrac{2}{7}\).x - \(\dfrac{1}{8}\) = 2\(\dfrac{3}{4}\)
c) x : 4\(\dfrac{1}{3}\) = - 2,5
d) (\(\dfrac{3x}{7}\) + 1) : (-4) = \(\dfrac{-1}{28}\)
giúp em
`#040911`
`a)`
`3 1/3 x + 16 3/4 = -13,25`
`=> 3 1/3 x = -13,25 - 16 3/4`
`=> 3 1/3 x = -30`
`=> x = -30 \div 3 1/3`
`=> x =-9`
Vậy, `x = -9`
`b)`
`3 2/7*x - 1/8 = 2 3/4`
`=> 3 2/7x = 2 3/4 + 1/8`
`=> 3 2/7x = 23/8`
`=> x = 23/8 \div 3 2/7`
`=> x = 7/8`
Vậy, `x = 7/8`
`c)`
`x \div 4 1/3 = -2,5`
`=> x = -2,5 * 4 1/3`
`=> x = -65/6`
Vậy, `x = -65/6`
`d)`
`( (3x)/7 + 1) \div (-4) = (-1)/28`
`=> (3x)/7 +1 = (-1)/28 * (-4)`
`=> (3x)/7 + 1 = 1/7`
`=> (3x)/7 = 1/7 - 1`
`=> (3x)/7 = -6/7`
`=> 3x = -6`
`=> x = -6 \div 3`
`=> x = -2`
Vậy, `x = -2.`
a
=>10/3 . x + 16 + 3/4 = -13,25
=>10/3 x + 3/4 = -29,25
=>10/3 x = -30
=>x=-30 : 10/3
=>x=-30 . 3/10
=>x=-9
b.
=>23/7 x - 1/8 = = 11/4
=>23/7 x = 11/4 + 1/8
=>23/7 x= 22/8 + 1/8
=>23/7 x= 23/8
=>x=23/8 : 23/7
=>x=23/8 . 7/23
=>x=7/8
c.
=>x : 13/3 =-5/2
=>x=-5/2 . 13/3
=>x=-65/6
d.
=>3x/7 +1 = (-1/28) . (-4)
=>3x/7 + 1 = 1/7
=>3x/7 = -6/7
=>3x=-6
=>x=-2
a) \(3\dfrac{1}{3}x+16\dfrac{3}{4}=-13,25\)
\(\Rightarrow\dfrac{10}{3}x+\dfrac{67}{4}=-\dfrac{53}{4}\)
\(\Rightarrow\dfrac{10}{3}x=-30\)
\(\Rightarrow x=-30:\dfrac{10}{3}\)
\(\Rightarrow x=-9\)
b) \(3\dfrac{2}{7}x-\dfrac{1}{8}=2\dfrac{3}{4}\)
\(\Rightarrow\dfrac{23}{7}x-\dfrac{1}{8}=\dfrac{11}{4}\)
\(\Rightarrow\dfrac{23}{7}x=\dfrac{11}{4}+\dfrac{1}{8}\)
\(\Rightarrow\dfrac{23}{7}x=\dfrac{23}{8}\)
\(\Rightarrow x=\dfrac{23}{8}:\dfrac{23}{7}\)
\(\Rightarrow x=\dfrac{7}{8}\)
c) \(x:4\dfrac{1}{3}=-2,5\)
\(\Rightarrow x:\dfrac{13}{3}=-\dfrac{5}{2}\)
\(\Rightarrow x=-\dfrac{5}{2}\cdot\dfrac{13}{3}\)
\(\Rightarrow x=-\dfrac{65}{6}\)
d) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\Rightarrow\dfrac{3x}{7}+1=\dfrac{-1}{28}\cdot-4\)
\(\Rightarrow\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\Rightarrow\dfrac{3x}{7}=-\dfrac{6}{7}\)
\(\Rightarrow x=-\dfrac{6}{7}:\dfrac{3}{7}\)
\(\Rightarrow x=-2\)
M = \(1:(\dfrac{1}{2+\sqrt{x}}+\dfrac{\dfrac{3x}{2}}{4-x}-\dfrac{2}{4-2\sqrt{x}}):\dfrac{1}{4-2\sqrt{x}}\)
a) Rút gọn M
b) Tìm giá trị của x để M = 20
a: \(M=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{1}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{4-2\sqrt{x}}{1}\)
\(=1:\left(\dfrac{2\sqrt{x}-4-3x+\sqrt{x}+2}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{-2\left(\sqrt{x}-2\right)}{1}\)
\(=\dfrac{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\cdot\left(-2\right)\cdot\left(\sqrt{x}-2\right)}{-3x+3\sqrt{x}-2}\)
\(=\dfrac{-4\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}{-3x+3\sqrt{x}-2}\)
b: M=20
=>\(-4\left(x-4\right)\left(\sqrt{x}-2\right)=-60x+60\sqrt{x}-40\)
=>\(x\sqrt{x}-2x-4\sqrt{x}+8=-15x+15\sqrt{x}-10\)
=>\(x\sqrt{x}+13x-19\sqrt{x}+18=0\)
=>\(x\in\varnothing\)