a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
a) Ta có: \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Leftrightarrow M=\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{\left(x+3\right)\left(x^2-3x+9\right)}=1\)
b) Ta có: \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}\)
\(\Leftrightarrow M=\dfrac{\left(x-4\right)^2\cdot\left(x+4\right)}{\left(4-x\right)\left(4+x\right)}=4-x\)