Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Bé Yêu Đời
Xem chi tiết
lê phúc
3 tháng 9 2019 lúc 19:53

lolang

Earth-K-391
Xem chi tiết
Đỗ Thanh Hải
25 tháng 5 2021 lúc 10:46

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)

ĐPcm

Giải:

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\) 

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\) 

\(\Rightarrow S< 1\) 

Vậy S < 1.

👁💧👄💧👁
Xem chi tiết
Khánh Huyền Dương Nữ
Xem chi tiết
Quốc Lê Minh
Xem chi tiết
Trịnh Hiền Trang
Xem chi tiết
nguyenthuyduong
Xem chi tiết
Akai Haruma
12 tháng 10 lúc 21:29

Lời giải:

$\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+....+\frac{1}{99}$

$=1+(\frac{98}{2}+1)+(\frac{97}{3}+1)+.....+(\frac{1}{99}+1)$

$=1+\frac{100}{2}+\frac{100}{3}+....+\frac{100}{99}$

$=\frac{100}{2}+\frac{100}{3}+....+\frac{100}{99}+\frac{100}{100}$

$=100(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100})$

Suy ra: 

\(S=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}}{100(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100})}=\frac{1}{100}\)

Đinh Đức Hùng
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
Ngọc Mai
20 tháng 8 2017 lúc 9:26

Ta có:

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2.\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(N+1\right)}=1+\frac{1}{n\left(n+1\right)}\)

\(=1+\frac{1}{n}-\frac{1}{n+1}\)

Thế vào bài toán ta được

\(S=1+1+...+1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)