Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
Quỳnh Lisa
8 tháng 7 2021 lúc 14:32

áp dụng bất đẳng thức cô si cho:

*a+b≥\(2\sqrt{ab}\)

*b+c≥\(2\sqrt{bc}\)

*c+a≥\(2\sqrt{ca}\)

➩2(a+b+c)≥2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\))

➩ĐPCM

Viêt Thanh Nguyễn Hoàn...
8 tháng 7 2021 lúc 14:33

Ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\Leftrightarrow2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt[]{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

(luôn đúng với mọi a,b,c không âm)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 10:33

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

Hiếu Cao Huy
25 tháng 4 2017 lúc 5:41

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

Tôm Tớn
Xem chi tiết
nguyễn đức duy
30 tháng 7 2015 lúc 23:11

áp dụng bất đẳng thức cô- si, ta có:

\(a+b\ge2\sqrt{ab}\)  \(\left(1\right)\)

\(b+c\ge2\sqrt{bc}\)  \(\left(2\right)\)

\(c+a\ge2\sqrt{ca}\)  \(\left(3\right)\)

Cộng (1),(2),(3) vế theo vế, ta được:

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu " = " xảy ra <=> \(a=b=c\)

Nguyễn Huy Hoàng
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 8:35

Lời giải:
Áp dụng BĐT AM-GM:

$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$

$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$

$=2(a+b+c)=2$
Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

09.Phạm Trần Duân
Xem chi tiết
Trần Tuấn Hoàng
26 tháng 4 2022 lúc 22:17

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:57

14:

\(A=\sqrt{-4x^2+4x+7}\)

\(=\sqrt{-\left(4x^2-4x-7\right)}\)

\(=\sqrt{-\left(4x^2-4x+1-8\right)}\)

\(=\sqrt{-\left(2x-1\right)^2+8}< =\sqrt{8}=2\sqrt{2}\)

Dấu = xảy ra khi 2x-1=0

=>\(x=\dfrac{1}{2}\)

13:

\(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

=>\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}>=0\)

=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(a-2\sqrt{ac}+c\right)>=0\)

=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)(luôn đúng)

Nguyễn Như Quỳnh
Xem chi tiết
Khôi Bùi
19 tháng 3 2019 lúc 22:40

Ta có : \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ac+c^2}=\sqrt{\left(b+a\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(c+b\right)}\)

\(\le\frac{a+c+b+c}{2}+\frac{a+b+b+c}{2}+\frac{a+c+a+b}{2}=2\left(a+b+c\right)\)

( áp dụng BĐT Cô - si cho các số a ; b ; c dương )

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab+bc+ac=1\\a+c=b+c=a+b\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy ...

My Nguyễn
Xem chi tiết
Trà My
25 tháng 10 2016 lúc 22:23

Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)

Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)

Ta có đpcm

My Nguyễn
Xem chi tiết
đỗ hải anh
Xem chi tiết