cho biểu thức A = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) với x≥0 tính giá trị của A khi x=25
Cho 2 biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và B\(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\) với x ≥ 0 ; x≠ 25
a) Tính giá trị biểu thức khi x = 9. Chứng minh rằng B =\(\dfrac{1}{\sqrt{x}+5}\)
b) Tìm tất cả các giá trị của x để A = B .|x-4|
a: Thay x=9 vào A, ta được:
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)
\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)
b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Leftrightarrow x-4=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-6=0\)
=>x=9
Câu 1:
Cho các biểu thức: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1, x ≠ 9.
a) Tính giá trị của B khi x = 25;
b) Rút gọn biểu thức M = A.B;
c) Tìm x sao cho \(M< \sqrt{M}.\)
Câu 2:
a) Khi uống nước giải khát, người ta hay sử dụng ống hút bằng nhựa hình trụ có đường kính đáy là 0,4cm, độ dài trục là 16cm. Hỏi khi thải ra môi trường, diện tích nhựa gây ô nhiễm môi trường do 100 ống hút này gây ra là bao nhiêu?
b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Tìm số tự nhiên có hai chữ số mà hiệu giữa chữ số hàng chục và chữ số hàng đơn vị là 3. Còn tổng các bình phương hai chữ số của số đó bằng 45.
Câu 3:
1) Xác định tọa độ các giao điểm của parabol (P): y = x2 và đường thẳng (d): \(y=\sqrt{3}x-\sqrt{3}+1.\)
2) Cho hệ phương trình: \(\left\{{}\begin{matrix}\left|x\right|+y=m\\2\left|x\right|-y=1\end{matrix}\right.\)
a) Giải hệ phương trình khi m = -1;
b) Tìm m để hệ phương trình có hai nghiệm phân biệt.
Câu 4:
Cho đường tròn (O;R) đường kính AB. Bán kính OC⊥AB tại O. Điểm M thuộc cung nhỏ AC. Nối BM cắt AC tại H. Kẻ HK⊥AB tại K. Lấy E thuộc đoạn thẳng MB sao cho BE = AM.
a) Chứng minh tứ giác BCHK là tứ giác nội tiếp;
b) Chứng minh tam giác CME vuông cân;
c) Chứng minh OCMK là tứ giác nội tiếp và tâm đường trong ngoại tiếp tam giác MCK luôn thuộc một đường thẳng cố định khi M di chuyển trên cung nhỏ AC.
Câu 5:
Giải phương trình: \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2.\)
Câu 2:
a,
diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)
b,
gọi chữ số hàng chục là a (a>0, a ∈N)
hàng đơn vị là b (b∈N)
hiệu 2 chữ số là: a-b=3 (1)
tổng bình phương 2 chữ số là: a2+b2=45 (2)
từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}a-b=3\\a^2+b^2=45\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)
vậy chữ số đó là 63
Câu 1
a, Thay x=25 vào biểu thức B ta có
B=\(\dfrac{\sqrt{25}-3}{\sqrt{25}-1}=\dfrac{5-3}{5-1}=\dfrac{2}{4}=\dfrac{1}{2}\)
b, Ta có M=\(A\cdot B\)
⇒\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
=\(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
=\(\dfrac{3x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)
=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{3\sqrt{x}}{\sqrt{x}+3}\)
c, Để M<\(\sqrt{M}\)
Thì\(\text{}\text{}\text{}\text{}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}+3}}\)
⇔\(\text{}\text{}\text{}\text{}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \dfrac{\sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}}{\sqrt{x}+3}\)
⇔\(\text{}\text{}\text{}\text{}3\sqrt{x}< \sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}\)
⇔\(\text{}\text{}\text{}\text{}9x< 3\sqrt{x}\left(\sqrt{x}+3\right)\)
⇔\(\text{}\text{}\text{}\text{}3\sqrt{x}< \sqrt{x}+3\)
⇔\(\text{}\text{}\text{}\text{}2\sqrt{x}< 3\)
⇔\(\text{}\text{}\text{}\text{}\sqrt{x}< \dfrac{3}{2}\)
⇒\(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{9}{4}\end{matrix}\right.\)
⇒\(0\le x< \dfrac{9}{4}\)
Câu 2:
a,
diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)
b,
gọi chữ số hàng chục là a (a>0, a ∈N)
hàng đơn vị là b (b∈N)
hiệu 2 chữ số là: a-b=3 (1)
tổng bình phương 2 chữ số là: a2+b2=45 (2)
từ (1) và (2) ta có hpt:
{a−b=3a2+b2=45{a−b=3a2+b2=45
=> {a=6b=3
1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 )
a) Tính giá trị biểu thức A khi x = 9
b) Tìm x để A = 3
c) Tìm giá trị nhỏ nhất của A
2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9)
a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)
b) Tìm x để B có giá trị âm
c) Tìm giá trị nhỏ nhất của B
3) Cho biểu thức C = \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1
a) Tìm x để C = 7
b) Tìm x để C > 6
c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\)
4) Cho biểu thức D = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1
a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0
b) Tìm x để D có giá trị là \(\dfrac{1}{2}\)
c) Tìm x để D có giá trị nguyên
5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9
a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\)
b) Tìm điều kiện của x để E < 1
c) Tìm x nguyên để E có giá trị nguyên
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Cho biểu thức A=\(\dfrac{6-2\sqrt{x}}{\sqrt{x}-5}\) và B=\(\dfrac{1}{\sqrt{x}-5}-\dfrac{x+3\sqrt{x}}{25-x}\)với x>0, x # 25.
1) Tính giá trị biểu thức A khi x =16.
2) Chứng minh rằng A +B là một số nguyên.
1: Thay x=16 vào A, ta được:
\(A=\dfrac{6-2\cdot4}{4-5}=\dfrac{-2}{-1}=2\)
Câu 1.
Cho các biểu thức \(A=\dfrac{25\sqrt{x}+6}{x-36}-\dfrac{\sqrt{x}-1}{6-\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+6}\) và \(B=\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với \(x\ge0;x\ne1;x\ne36\)
a) Tính giá trị của biểu thức B khi x = 16.
b) Rút gọn biểu thức A.
c) Đặt T = \(\sqrt{A.B}.\) Tìm giá trị nhỏ nhất của biểu thức T.
Câu 2.
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hôm chủ nhật trước, Dũng được bố chở bằng xe máy đi về quê cách nhà 60 km với vận tốc dự định. Trên đường về do có \(\dfrac{1}{3}\) quãng đường là đường xấu nên để đảm bảo an toàn, bố bạn đã phải giảm bớt vận tốc đi 10 km/h, do đó đã về tới quê chậm nhất 10 phút so với dự kiến. Tính vận tốc dự định của hai bố con bạn Dũng.
Câu 3.
1) Giải hệ phương trình: \(\left\{{}\begin{matrix}2\sqrt{x-1}+\dfrac{14}{2y+1}=10\\\sqrt{x-1}-\dfrac{5}{2y+1}=\dfrac{23}{7}\end{matrix}\right.\)
2) Cho phương trình \(x^2-2\left(m+5\right)x+2m+9=0\)
a) Giải phương trình với m = 10.
b) Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện: x1 - 2 \(\sqrt{x_2}=0\).
Câu 4.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh AEHF, BCEF là các tứ giác nội tiếp.
b) Kẻ đường kính AM của (O). Chứng minh BHCM là hình bình hành và AB.AC = AM.AD.
c) Cho BC cố định, A di động trên cung lớn BC sao cho ABC có ba góc nhọn; BE cắt (O) tại I. CF cắt (O) tại J. Chứng minh đoạn IJ có độ dài không đổi.
Câu 1:
a) Khi x =16 (t.m ĐKXĐ) thì B có giá trị là:
\(B=\dfrac{16-6\cdot4}{4-1}=\dfrac{-8}{3}\)
b) Ta có:
\(A=\dfrac{25\sqrt{x}+6}{x-36}-\dfrac{\sqrt{x}-1}{6-\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+6}=\dfrac{25\sqrt{x}+6}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{25\sqrt{x}+6+x+5\sqrt{x}-6+2x-12\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3x+18\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-6}\)
c) Ta có:
\(T=\sqrt{A\cdot B}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)}}=\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\overset{Cosi}{\ge}\sqrt{3\cdot2+6}=2\sqrt{3}\)
Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(t.m\right)\)
Gọi vận tốc dự định của hai bố con bạn Dũng là x(km/h)(x>0).Đổi: 10 phút =\(\dfrac{1}{6}\)(h)
thời gian dự định đi về quê là \(\dfrac{60}{x}\)(h)
vận tốc đi trên \(\dfrac{1}{3}\)quãng đường là đường xấu hai bố con bạn Dũng là \(x-10\)(km/h)
Thời gian thực tế đi về quê là \(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\)(h)
Vì hai bố con bạn Dũng đã về tới quê chậm mất 10 phút so với dự kiến
Nên ta có pt sau:
\(\left(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\right)-\dfrac{1}{6}=\dfrac{60}{x}\)
⇔\(\dfrac{20}{x-10}+\dfrac{40}{x}-\dfrac{1}{6}=\dfrac{60}{x}\)
⇔\(20x+40\left(x-10\right)-\dfrac{1}{6}x\left(x-10\right)=60\left(x-10\right)\)
⇔\(-\dfrac{1}{6}x^2+\dfrac{5}{3}x+200=0\)
⇒\(\left[{}\begin{matrix}x=40\left(n\right)\\x=-30\left(l\right)\end{matrix}\right.\)
Vậy ......
Gọi x(km/h)x(km/h) là vận tốc dự định của hai bố con (x>10)(x>10)
Thời gian dự định là: 60x60x (giờ)
1313 quãng đường là: 13.60=20(km)13.60=20(km)
Vận tốc trên đoạn đường 20km20km là: x−10(km/h)x−10(km/h)
Thời gian đi trên đoạn đường 20km20km là: 20x−1020x-10 (giờ)
Đoạn đường đi với vận tốc dự định là: 60−20=40(km)60-20=40(km)
Thời gian đi trên đoạn đường 40km40km là: 40x40x (giờ)
Vì hai bố con về tới quê chậm 1010 phút =16=16 giờ nên ta có phương trình sau:
60x+16=20x−10+40x 60x+16=20x-10+40x
⇔20x+16−20x−10=0⇔20x+16-20x-10=0
⇔20.6(x−10)+1.x(x−10)−20.6x=0⇔20.6(x-10)+1.x(x-10)-20.6x=0
⇔120x−1200+x2−10x−120x=0⇔120x-1200+x2-10x-120x=0
⇔x2−10x−1200=0⇔x2-10x-1200=0
⇔⇔[x=−30(loại)x=40(thỏa mãn)[x=−30(loại)x=40(thỏa mãn)
Vậy vận tốc dự định của hai bố con là 40km/h
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.
Câu 2:Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(với x >0,x khác 1)
a)Rút gọn biểu thức P
b)Tính giá trị của biểu thức P khi 2\(\sqrt{x+1=5}\)
c)Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(=\dfrac{x-1}{x}\)
b) Sửa đề: \(2\sqrt{x+1}=5\)
Ta có: \(2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)
\(\Leftrightarrow x+1=\dfrac{25}{4}\)
hay \(x=\dfrac{21}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:
\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)
Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)
c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)
mà \(2x>0\forall x\) thỏa mãn ĐKXĐ
nen \(2\left(x-1\right)-x+1>0\)
\(\Leftrightarrow2x-2-x+1>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để \(P>\dfrac{1}{2}\) thì x>1
Bài 1 :Cho hai biểu thức\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và\(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\) với x≥ 0; x≠1
a. Tính giá trị của biểu thức A khi x = 4
b. Chứng minh\(\dfrac{2}{\sqrt{x}+1}\)
Bài 2:
Cho biểu thức:\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn P
Bài 2:
Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)và B=\(\dfrac{3x}{x-2\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)với x>0,x\(\ne\)1
1.Tính giá trị biểu thức khi A=0,09
2.Rút gọn biểu thức B và M=B:A
3.Tìm giá trị x để biểu thức M<1
1) Sửa đề: x=0,09
Thay x=0,09 vào A, ta được:
\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)