Cho x,y thuộc \(\left\{-29;-28;-27;...28;29;30\right\}\)
a,Tìm \(GTLN\) của \(\frac{x-y}{x+y}\)
b,Tìm \(GTLN\) của \(\frac{x.y}{x-y}\)
c,Tìm \(GTNN\) của \(\frac{x+y}{x-y}\)
Cho:\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)Tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(y^{11}+z^{11}\right)\left(z^{2013}+x^{2013}\right)\)
cho số thực x,y không ậm và thỏa mãn điều kiện:\(x^2+y^2\le2\).hãy tính giá trị lớn nhất của biểu thức:
\(P=\sqrt{x\cdot\left(29\cdot x+3\cdot y\right)}+\sqrt{y\cdot\left(29\cdot y+3\cdot x\right)}\)
a, Tìm x,y biết \(\left|x-y-2\right|^{2017}\)+ \(\left(x+y-8\right)^{2018}\)\(\le\)0
b,Cho số \(\overline{abcd}\) chia hết cho 29. Chứng minh a+3b+9c+27d chia hết cho 29
a)\(\left|x-y-2\right|^{2017}\ge0;\left(x+y-8\right)^{2018}\ge0\)
Nên VT \(\ge0\).Kết hợp đề bài suy ra \(VT=0\)
Dấu "=' xảy ra khi \(\hept{\begin{cases}x-y-2=0\\x+y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\\x+y=8\end{cases}}\Leftrightarrow2x=10\Leftrightarrow x=5\)
Suy ra \(5-y=2\Leftrightarrow y=3\)
Vậy ....
b)Đặt \(\overline{abcd}⋮29\Leftrightarrow1000a+100b+10c+d⋮29\)
Do 1000; 100; 10; 1 không chia hết cho 29 nên \(a;b;c;d⋮29\)
Nên \(a;3b;9c;27d⋮29\Rightarrow a+3b+9c+27d⋮9^{\left(đpcm\right)}\)
Cho M = { 1; 13; 21; 29; 52 }.
Tìm x; y thuộc M biết 30 < x; y < 40
cho x;y thuộc R thỏa mãn x-2y=5; x bình phương + 4.y bình phương=29. tính giá trị của A = x mũ 3 - 8.y mũ 3
1.Cho a,b thuộc N thỏa mãn (3a+2b) chia hết cho 17. CMR (10a+b) chia hết cho 17.
2.Cho x,y thuộc N thỏa mãn (7x+4y)chia hết cho 29. CMR (9x+y) chia hết cho 29.
3.Cho S là tổng của SSTN liên tiếp. Hỏi S chia cho 8 dư bao nhiêu ?
4.Cho abcd (abcd có dấu gạch ngang ở trên) chia hết cho 29. CMR (a+3b+9c+27d) chia hết cho 29.
a, \(5x\left(x-29\right)+x-29\)
b, \(x^2-2xy+y^2-16\)
Phân tích đa thứuc thành nhân tử
a: =(x-29)(5x+1)
b: =(x-y-4)(x-y+4)
a: =(x-29)(5x+1)
b: =(x-y-4)(x-y+4)
Cho hai số x,y thỏa mãn \(\left(x-25\right)^2=-\left|2y+5\right|\)
Tính giá trị của biểu thức M=\(^{x^2+y^2+\frac{29}{10}.y-9}\)
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)
ráng làm nốt rồi đi ngủ thoyy
1.
a) ĐK: \(x\ge2\)
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)
Vậy...
b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)
Vậy...
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
Nhân cả 2 vế với \(\sqrt{2}\) ta được :
\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)
Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)
2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)
Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)
Tương tự 2 trường hợp còn lại ta đều được \(B=0\)
Vậy \(B=0\)
Cho x , y thuộc Q . Chứng tỏ rằng : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Với mọi \(x,y\in Q\) ta có:
\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)
\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)
Dấu '' = '' xảy ra khi \(xy\ge0.\)
Chúc bạn học tốt!